应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法

被引:18
作者
李霞
饶绍奇
张田文
郭政
张庆普
K.L.Moser
E.J.Topol
机构
[1] 哈尔滨工业大学计算机科学系
[2] Department of Molecular Cardiology
[3] the Cleveland Clinic Foundation
[4] Euclid Avenue
[5] Cleveland
[6] OH
[7] USA Department of Molecular Cardiology
[8] USA
[9] 哈尔滨医科大学生物医学工程学教研室与生物信息学研究室
[10] Department of Medicine
[11] Institute of Human Genetics
[12] University of Minnesota
[13] MN
[14] USA 哈尔滨哈尔滨医科大学生物医学工程学教研室与生物信息学研究室哈尔滨
[15] 哈尔滨
[16] 哈尔滨Center for Cardiovascular Genetics
[17] Department of Cardiovascular Medicine
[18] the Clevel and Clinic Foundation
[19] Clevel and
关键词
基因表达谱; 集成决策; 递归分类树; 特征识别;
D O I
暂无
中图分类号
Q819 [生物工程应用];
学科分类号
摘要
DNA芯片技术的迅速发展,可同时检测成千上万个基因的表达谱数据,为生命科学家们从一个全新的角度阐明生命的本质提供了可能性.目前,基因表达谱分析的工作大多集中在对癌症等疾病分类、疾病亚型识别等方面,而从这些基因表达谱信息中挖掘反映疾病本质特征的相关基因,是一项在后基因组时代更具挑战意义的科学研究,基因挖掘由于缺少理想的数据挖掘技术而被忽视.我们提出了一种新颖的特征基因挖掘的集成决策方法,目的在于解决三个重要的生物学问题:生物学分类及疾病分型、复杂疾病相关基因深度挖掘和目标驱使的基因网络构建.我们成功地将此集成决策方法应用于一套结肠癌DNA表达谱数据,结果显示这一新颖的特征基因挖掘技术在应用DNA芯片数据分析、挖掘复杂疾病相关基因等方面具有很高的价值.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 11 条
[1]  
Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling[J] . Eng-Juh Yeoh,Mary E Ross,Sheila A Shurtleff,W.Kent Williams,Divyen Patel,Rami Mahfouz,Fred G Behm,Susana C Raimondi,Mary V Relling,Anami Patel,Cheng Cheng,Dario Campana,Dawn Wilkins,Xiaodong Zhou,Jinyan Li,Huiqing Liu,Ching-Hon Pui,William E Evans,Clayton Naeve,Limsoon Wong,James R Downing.Cancer Cell . 2002 (2)
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Tree-based recursive partitioning methods for subdividing sibpairs into relatively more homogeneous subgroups [J].
Shannon, WD ;
Province, MA ;
Rao, DC .
GENETIC EPIDEMIOLOGY, 2001, 20 (03) :293-306
[4]  
Discovering Patterns in Microarray Data[J] . Harry B. Burke.Molecular Diagnosis . 2000 (4)
[5]  
Selection of relevant features and examples in machine learning[J] . Avrim L. Blum,Pat Langley.Artificial Intelligence . 1997 (1)
[6]  
Wrappers for feature subset selection[J] . Ron Kohavi,George H. John.Artificial Intelligence . 1997 (1)
[7]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[8]  
The investigation of linkage between a quantitative trait and a marker locus[J] . J. K. Haseman,R. C. Elston.Behavior Genetics . 1972 (1)
[9]  
Selection bias in gene extractionon the basis of microarray gene-expression data .2 Ambroise,C,McLachlan,G J. Proc Natl AcadSci USA . 2002
[10]  
Regulation of the mRNA for monocytederived neutrophil-activating peptide indifferentiating HL60 promyelocytes .2 Kowalski J,Denhardt DT. Mol Cell Biol . 1989