New capabilities in QosCosGrid middleware for advanced Job management, advance reservation and co-allocation of computing resources - Quantum chemistry application use case

被引:10
作者
Bosak, Bartosz [1 ]
Komasa, Jacek [2 ]
Kopta, Piotr [1 ]
Kurowski, Krzysztof [1 ]
Mamoński, Mariusz [1 ]
Piontek, Tomasz [1 ]
机构
[1] Poznań Supercomputing and Networking Center, Poznań
[2] Adam Mickiewicz University, Faculty of Chemistry, Poznań 60-780
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2012年 / 7136 LNCS卷
关键词
advance reservation; High Performance Computing; High Throughput Computing; metascheduling; MPI; parallel computing; QoS;
D O I
10.1007/978-3-642-28267-6_4
中图分类号
学科分类号
摘要
In this chapter we present the new capabilities of QosCosGrid (QCG) middleware for advanced job and resource management in the grid environment. By connecting many computing clusters together, QosCosGrid offers easy-to-use mapping, execution and monitoring capabilities for a variety of complex computations, such as parameter sweep, workflows, MPI or hybrid MPI-OpenMP as well as multiscale simulations. Thanks to QosCosGrid, large-scale programming models written in Fortran, C, C++ or Java can be automatically distributed over a network of computing resources with guaranteed Quality of Service - for example guaranteed startup time of a job. Consequently, applications can be run at specified periods with reduced execution time and waiting times. This enables more complex problem instances to be addressed. In order to prove the usefulness of the new functionality of QosCosGrid a detailed description of the system along with a real use case scenario from the quantum chemistry science domain will be presented in this chapter. © 2012 Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:40 / 55
页数:15
相关论文
共 22 条
  • [1] Agullo E., Coti C., Herault T., Langou J., Peyronnet S., Rezmerita A., Cappello F., Dongarra J., QCG-OMPI: MPI applications on grids, Future Gener. Comput. Syst., 27, pp. 357-369, (2011)
  • [2] Bachorz R., Komasa J., Variational calculations on H2+ using exponentially correlated Gaussian wave functions, Computational Methods in Science and Technology, 11, 1, pp. 5-9, (2005)
  • [3] Boys S.F., The integralFormulae for the variational solution of the molecular many- electron wave equations in terms of gaussian functions with direct electronic correlation, Royal Society of London Proceedings Series, 258 A, pp. 402-411, (1960)
  • [4] Cencek W., Komasa J., Rychlewski J., High-performance computing in molecular sciences, Handbook on Parallel and Distributed Processing, (2000)
  • [5] Cencek W., Rychlewski J., Many-electron explicitly correlated gaussian functions. I, General Theory and Test Results, 98, 2, pp. 1252-1261, (1993)
  • [6] Cencek W., Szalewicz K., Ultra-high accuracy calculations for hydrogen molecule and helium dimer, International Journal of Quantum Chemistry, 108, pp. 2191-2198, (2008)
  • [7] Ciepiela E., Nowakowski P., Kocot J., Harezlak D., Gubala T., Meizner J., Kasztelnik M., Bartynski T., Malawski M., Bubak M., Managing entire lifecycles of e-science applications in gridspace2 virtual laboratory - from motivation through idea to operable web-accessible environment built on top of PL-grid e-infrastructure, PL-Grid 2011. LNCS, 7136, pp. 228-239, (2012)
  • [8] Dziubecki P., Grabowski P., Krysinski M., Kuczynski T., Kurowski K., Piontek T., Szejnfeld D., Online web-based science gateway for nanotechnology research, PL-Grid 2011. LNCS, 7136, pp. 205-216, (2012)
  • [9] Kravtsov V., Bar P., Carmeli D., Schuster A., Swain M., A scheduling framework for large-scale, parallel, and topology-aware applications, Journal of Parallel and Distributed Computing 70, 9, pp. 983-992, (2010)
  • [10] Kurowski K., Ludwiczak B., Nabrzyski J., Oleksiak A., Pukacki J., Dynamic grid scheduling with job migration and rescheduling in the gridlab resource management system, Sci. Program, 12, pp. 263-273, (2004)