Avalanche breakdown in multicrystalline solar cells due to preferred phosphorous diffusion at extended defects

被引:17
作者
Bauer, Jan [1 ]
Lausch, Dominik [2 ]
Blumtritt, Horst [1 ]
Zakharov, Nikolai [1 ]
Breitenstein, Otwin [1 ]
机构
[1] Max Planck Institute of Microstructure Physics, 06120 Halle
[2] Fraunhofer Center for Silicon Photovoltaics CSP, Halle
来源
Bauer, J. (jbauer@mpi-halle.mpg.de) | 1600年 / John Wiley and Sons Ltd卷 / 21期
关键词
alkaline texture; avalanche breakdown; breakdown voltage; multicrystalline solar cells; p-n junction;
D O I
10.1002/pip.2220
中图分类号
学科分类号
摘要
Multicrystalline solar cells break down strongly at reverse voltages well below the theoretical limit. Previous explanations were based on assuming a constant depth of the junction below the surface. In this work, preferred phosphorous diffusion at special line defects in grain boundaries is shown to lead to spikes in the p-n junctions even below flat surfaces. The curvature radii of the spherical p-n junction bending are measured by electron beam-induced current to be in the range of 300-500 nm, leading to the observed type III avalanche breakdown voltages. Copyright © 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1444 / 1453
页数:9
相关论文
共 30 条
[21]  
Baraona C.R., Brandhorst H.W., V-grooved silicone solar cells, IEEE Proceedings of the 11th PVSC, Phoenix, AZ, USA, (1975)
[22]  
Hylton J.D., Kinderman R., Burgers A.R., Sinke W.C., Bressers P.M.M.C., Uniform pyramid formation on alkaline-etched polished monocrystalline (100) silicon wafers, Progress in Photovoltaics: Research and Applications, 4, 6, pp. 435-438, (1996)
[23]  
Sopori B.L., Reflection characteristics of textured polycrystalline silicon substrates for solar cells, Solar Cells, 25, pp. 15-26, (1988)
[24]  
Xi Z., Yang D., Dan W., Jun C., Li X., Que D., Texturization of multicrystalline silicon for solar cells, Semiconductor Science and Technology, 19, pp. 485-489, (2004)
[25]  
Newman R., Visible light from silicon p-n junction, Physical Review, 100, pp. 700-703, (1955)
[26]  
Wagner J.-M., Bauer J., Breitenstein O., Classification of pre-breakdown phenomena in multicrystalline silicon solar cells, Proceedings of 24th EUPVSEC, Hamburg, Germany, pp. 925-929, (2009)
[27]  
Schneemann M., Helbig A., Kirchartz T., Carius R., Rau U., Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial resolution, Physica Status Solidi A, 207, pp. 2597-2600, (2010)
[28]  
Breitenstein O., Bauer J., Trupke T., Bardos R.A., On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging, Progress in Photovoltaics: Research and Applications, 16, pp. 325-330, (2008)
[29]  
Blumtritt H., Zakharov N., Lausch D., Bauer J., FIB/EBIC technique for defect studies and tem target preparation of multicrystalline solar cell silicon, 6th FIB/SEM D-A-CH Workshop, Current Webpage, (2011)
[30]  
Schimpf K., Palm J., Alexander H., Enhanced diffusion of phosphorous at grain boundaries in multicrystalline silicon, Crystal Research and Technology, 29, pp. 1123-1129, (1994)