3D hexagonal (R-3m) mesostructured nanocrystalline titania thin films: Synthesis and characterization

被引:78
作者
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ont. M5S 3H6, Canada [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
机构
[1] Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ont. M5S 3H6
[2] X-ray Science Division, Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL 60439
[3] Oak Ridge National Laboratory (ORNL), Oak Ridge
[4] Xerox Research Centre of Canada, Mississauga, Ont. L5K 2L1
[5] Plastic Additives Research and Technology, Ciba Specialty Chemicals, Tarrytown, NY 10591
来源
Adv. Funct. Mater. | 2006年 / 13卷 / 1731-1738期
关键词
D O I
10.1002/adfm.200500507
中图分类号
学科分类号
摘要
A straightforward and reproducible synthesis of crack-free large-area thin films of 3D hexagonal (R-3m) mesostructured nanocrystalline titania (meso-nc-TiO2) using a Pluronic triblock copolymer (P123)/1-butanol templating system is described. The characterization of the films is achieved using a combination of electron microscopy (high-resolution scanning electron microscopy and scanning transmission electron microscopy), grazing-incidence small-angle X-ray scattering, in situ high-temperature X-ray diffraction, and variable-angle spectroscopic ellipsometry. The mesostructure of the obtained films is found to be based upon a 3D periodic array of large elliptically shaped cages with diameters around 20 nm interconnected by windows of about 5 nm in size. The mesopores of the film calcined at 300°C are very highly ordered, and the titania framework of the film has a crystallinity of 40 % being composed of 5.8 nm sized anatase crystallites. The film displays high thermal stability in that the collapse of the pore architecture is incomplete even at 600°C. The accessible surface area of 3D hexagonal meso-nc-TiO2 estimated by the absorption of methylene blue is nearly twice as large as that of 2D hexagonal meso-nc-TiO2 at the same annealing temperature. © 2006 WILEY-VCH Verlag GmbH & Co.
引用
收藏
页码:1731 / 1738
页数:7
相关论文
共 59 条
[1]  
Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Nature, 259, (1992)
[2]  
Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B., Schlenker J.L., J. Am. Chem. Soc., 114, (1992)
[3]  
Goltner C.G., Antonietti M., Adv. Mater., 9, (1997)
[4]  
Ying J.Y., Mehnert C.P., Wong M.S., Angew. Chem. Int. Ed., 38, (1999)
[5]  
Ozin G.A., Chem. Commun., (2000)
[6]  
Tiemann M., Froba M., Chem. Mater., 13, (2001)
[7]  
Soler-Illia G.J.A.A., Sanchez C., Lebeau B., Patarin J., Chem. Rev., 102, (2002)
[8]  
Antonelli D.M., Ying J.Y., Angew. Chem. Int. Ed. Engl., 34, (1995)
[9]  
Yang P., Zhao D., Margolese D.I., Chmelka B.F., Stucky G.D., Nature, 396, (1998)
[10]  
Yun H.-S., Miyazawa K., Zhou H., Honma I., Kuwabara M., Adv. Mater., 13, (2001)