3D hexagonal (R-3m) mesostructured nanocrystalline titania thin films: Synthesis and characterization

被引:78
作者
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ont. M5S 3H6, Canada [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
机构
[1] Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ont. M5S 3H6
[2] X-ray Science Division, Advanced Photon Source (APS), Argonne National Laboratory, Argonne, IL 60439
[3] Oak Ridge National Laboratory (ORNL), Oak Ridge
[4] Xerox Research Centre of Canada, Mississauga, Ont. L5K 2L1
[5] Plastic Additives Research and Technology, Ciba Specialty Chemicals, Tarrytown, NY 10591
来源
Adv. Funct. Mater. | 2006年 / 13卷 / 1731-1738期
关键词
D O I
10.1002/adfm.200500507
中图分类号
学科分类号
摘要
A straightforward and reproducible synthesis of crack-free large-area thin films of 3D hexagonal (R-3m) mesostructured nanocrystalline titania (meso-nc-TiO2) using a Pluronic triblock copolymer (P123)/1-butanol templating system is described. The characterization of the films is achieved using a combination of electron microscopy (high-resolution scanning electron microscopy and scanning transmission electron microscopy), grazing-incidence small-angle X-ray scattering, in situ high-temperature X-ray diffraction, and variable-angle spectroscopic ellipsometry. The mesostructure of the obtained films is found to be based upon a 3D periodic array of large elliptically shaped cages with diameters around 20 nm interconnected by windows of about 5 nm in size. The mesopores of the film calcined at 300°C are very highly ordered, and the titania framework of the film has a crystallinity of 40 % being composed of 5.8 nm sized anatase crystallites. The film displays high thermal stability in that the collapse of the pore architecture is incomplete even at 600°C. The accessible surface area of 3D hexagonal meso-nc-TiO2 estimated by the absorption of methylene blue is nearly twice as large as that of 2D hexagonal meso-nc-TiO2 at the same annealing temperature. © 2006 WILEY-VCH Verlag GmbH & Co.
引用
收藏
页码:1731 / 1738
页数:7
相关论文
共 59 条
[21]  
Crepaldi E.L., Soler-Illia G.J.A.A., Grosso D., Sanchez C., New J. Chem., 27, (2003)
[22]  
Kavan L., Rathousky J., Gratzel M., Shklover V., Zukal A., Microporous Mesoporous Mater., 44, (2001)
[23]  
Bosc F., Ayral A., Albouy P.-A., Datas L., Guizard C., Chem. Mater., 16, (2004)
[24]  
Boettcher S.W., Bartl M.H., Hu J.G., Stucky G.D., J. Am. Chem. Soc., 127, (2005)
[25]  
Hagfeldt A., Gratzel M., Chem. Rev., 95, (1995)
[26]  
Gerfin T., Gratzel M., Walder L., Prog. Inorg. Chem., 44, (1997)
[27]  
Gratzel M., Prog. Photovolt. Res. Appl., 8, (2000)
[28]  
Gao L., Zhang Q., Scr. Mater., 44, (2001)
[29]  
Nakade S., Matsuda M., Kambe S., Saito Y., Kitamura T., Sakata T., Wada Y., Mori H., Yanagida S., J. Phys. Chem. B, 106, (2002)
[30]  
Lu Y., Ganguli R., Drewien C.A., Anderson M.T., Brinker C.J., Gong W., Guo Y., Soyez H., Dunn B., Huang M.H., Zink J.I., Nature, 389, (1997)