Application of proteomics in biotechnology - Microbial proteomics

被引:16
作者
Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, 1 Hoppin Streetst-4, Providence, RI 02904, United States [1 ]
不详 [2 ]
不详 [3 ]
机构
[1] Proteomics Core, COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI 02904
[2] Brown University Medical School, Providence, RI
[3] J. J. Strossmayer University of Osijek, Department of Chemistry, Osijek
来源
Biotechnol. J. | 2008年 / 4卷 / 496-509期
关键词
Genomics; Microbial proteomics; Process development;
D O I
10.1002/biot.200700234
中图分类号
学科分类号
摘要
The genomes of most economically important microbial cells are already sequenced and proteomic technologies can be applied during various process development steps, starting with the selection and optimization of the functions of the industrial strains, application of the knowledge of cell function in response to the changes of production parameters, validation of the downstream processing, and thorough characterization of the final product. Unfortunately, there are only a few direct examples in the literature that present the optimization of the production process based on proteomics. In this review, we discuss the potential of this technology for the design of future bioprocesses and for optimization of existing ones. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:496 / 509
页数:13
相关论文
共 175 条
[31]  
Futcher B., Latter G.I., Monardo P., McLaughlin C.S., Garrels J.I., A sampling of the yeast proteome., Mol. Cell. Biol., 19, pp. 7357-7368, (1999)
[32]  
Wiese S., Reidegeld K.A., Meyer H.E., Warscheid B., Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research., Proteomics, 7, pp. 340-350, (2007)
[33]  
Hensing M.C.M., Rouwenhorst R.J., Heijnen J.J., van Dijken J.P., Pronk J.T., Physiological and technological aspects of large‐scale heterologous‐protein production with yeasts., Antonie Van Leeuwenhoek, 67, pp. 261-279, (1995)
[34]  
van de Laar T., Visser C., Holster M., Garcia Lopez C., Increased heterologous protein production by Saccharomyces cerevisiae growing on ethanol as sole carbon source., Biotechnol. Bioeng., 96, pp. 483-494, (2007)
[35]  
Westergaard S.l., Oliveira A.P., Bro C., Olsson L., Nielsen J., A systems biology approach to study glucose represion in the yeast Saccharomyces cerevisiae., Biotechnol. Bioeng., 96, pp. 134-145, (2007)
[36]  
Roth S., Kumme J., Schuller H.-J., Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source – Responsive promoter element in the yeast Saccharomyces cerevisiae., Curr. Genet., 45, pp. 121-128, (2004)
[37]  
Hjersted J.L., Henson M.A., Mahadevan R., Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture., Biotechnol Bioeng., 97, pp. 1190-1204, (2007)
[38]  
Weeks M.E., Sinclair J., Butt A., Chung Y-L., A parallel proteomic and metabolomic anlysis of the hydrogen peroxide‐ and Sty1p‐dependent stress response in Schizosaccharomyces pombe., Proteomics, 6, pp. 2772-2796, (2006)
[39]  
Sun N., Jang J., Lee S., Kim S., The first two‐dimensional reference map of the fission yeast, Schizosaccharomyces pombe proteins., Proteomics, 5, pp. 1574-1579, (2005)
[40]  
Rupp S., Proteomics on its way to study host‐pathogen interaction in Candida albicans., Curr. Opin. Microbiol., 7, pp. 330-335, (2004)