Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

被引:34
作者
Prantner, Andrew M. [1 ]
Sharma, Vijay [1 ]
Garbow, Joel R. [1 ]
Piwnica-Worms, David [1 ,2 ]
机构
[1] Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO 63110
关键词
Gadolinium; Jurkat cells; Magnetic resonance imaging; Molecular imaging; Permeation peptides; Tat;
D O I
10.1162/153535003322750673
中图分类号
学科分类号
摘要
Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7-94 ± 0.11 mM -1 sec -1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.
引用
收藏
页码:333 / 341
页数:8
相关论文
共 46 条
[1]  
Caravan P., Ellison J., McMurry T., Lauffer R., Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications, Chem Rev, 99, pp. 2293-2352, (1999)
[2]  
Lukes I., Kotek J., Vojtisek P., Hermann P., Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues, Coordin Chem Rev, 216-217, pp. 287-312, (2001)
[3]  
Zhang S., Wu K., Sherry A., A novel pH-sensitive MRI contrast agent, Angew Chem Int Ed Engl, 38, pp. 3192-3194, (1999)
[4]  
Gerweck L., Seetharaman K., Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer, Cancer Res, 56, pp. 1194-1198, (1996)
[5]  
Vera D., Buonocore M., Wisner E., Katzberg R., Stadalnic R., A molecular receptor-binding contrast agent for magnetic resonance imaging of the liver, Acad Radiol, 2, pp. 497-506, (1995)
[6]  
Weissleder R., Reimer P., Lee A., Wittenberg J., Brady T., MR receptor imaging: Ultrasmall iron-oxide particles targeted to asialoglycoprotein receptors, Am J Roentgenol, 155, pp. 1161-1167, (1990)
[7]  
Anderson S., Rader R., Westlin W., Null C., Jackson D., Lanza C., Wickline S., Kotyk J., Magnetic resonance contrast enhancement of neovasculature with alpha(V)beta(3)-targeted nanoparticles, Magn Reson Med, 44, pp. 433-439, (2000)
[8]  
Aime S., Botta M., Garino E., Geninatti Crich S., Giovenzana G., Pagliarin R., Palmisano G., Sisti M., Non-covalent conjugates between cationic polyamino acids and Gd(III) chelates: A route for seeking accumulation of MRI-contrast agents at tumor targeting sites, Chem Eur J, 6, pp. 2609-2617, (2000)
[9]  
Lemieux G., Yarema K., Jacobs C., Bertozzi C., Exploiting differences in sialoside expression for selective targeting of MRI contrast reagents, J Am Chem Soc, 121, pp. 4278-4279, (1999)
[10]  
Moore A., Josephson L., Bhorade R., Basilion J., Weissleder R., Human transferrin receptor gene as a marker gene for MR imaging, Radiology, 221, pp. 244-250, (2001)