Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

被引:34
作者
Prantner, Andrew M. [1 ]
Sharma, Vijay [1 ]
Garbow, Joel R. [1 ]
Piwnica-Worms, David [1 ,2 ]
机构
[1] Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University Medical School, St. Louis, MO 63110
关键词
Gadolinium; Jurkat cells; Magnetic resonance imaging; Molecular imaging; Permeation peptides; Tat;
D O I
10.1162/153535003322750673
中图分类号
学科分类号
摘要
Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7-94 ± 0.11 mM -1 sec -1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.
引用
收藏
页码:333 / 341
页数:8
相关论文
共 46 条
[31]  
Sherry A., Brown III R., Geraldes C., Koenig S., Kuan K., Spiller M., Synthesis and characterization of the Gadolinium(3+) complex of DOTA-propylamide: A model DOTA-protein conjugate, Inorg Chem, 28, pp. 620-622, (1989)
[32]  
Aime S., Barge A., Bruce J., Botta M., Howard J., Moloney J., Parker D., De Sousa A., Woods M., NMR, relaxometric, and structural studies of the hydration and exchange dynamics of cationic lanthanide complexes of macrocyclic tetraamide ligands, J Am Chem Soc, 121, pp. 5762-5771, (1999)
[33]  
Aime S., Anelli P., Botta M., Fedeli F., Grandi M., Paoli P., Uggeri F., Synthesis, characterization, and 1/T <sub>1</sub> NMRD profiles of gadolinium (III) complexes of monoamide derivatives of DOTA-like ligands. X-ray structure of the 10-[2-[[2-hydroxy-1-(hydroxymethyl)ethyl]amino]-1-[(phenylmethoxy)methyl] -2-oxo-ethyl]l,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid-gadolinium (III) complex, Inorg Chem, 31, pp. 2422-2428, (1992)
[34]  
Morrow J., Amin S., Lake C., Churchill M., Synthesis, structure, and dynamic properties of the lanthanum(III) complex of 1,4,7,10-tetrakis(2-carbamoylethyl)-1,4,7,10-tetraazacydodode-cane, Inorg Chem, 32, pp. 4566-4572, (1993)
[35]  
Skinner P., Beeby A., Dickens R., Parker D., Aime S., Botta M., Conjugates of cyclodextrins with charged and neutral macro-cyclic europium, terbium and gadolinium complexes: Sensitized luminescence and relaxometric investigations and an example of supramolecular relaxivity enhancement, J Chem Soc, Perkin Trans, 2, pp. 1329-1338, (2000)
[36]  
Tweedle M., Physiochemical properties of gadoteridol and other magnetic resonance contrast agents, Invest Radial, 27, (1992)
[37]  
Normann P., Hals P., In vivo stability and excretion of gadodiamide (GdDTPA-BMA), a hydrophilic gadolinium complex used as a contrast enhancing agent for magnetic resonance imaging, Eur J Drug Metab Pharmacokinet, 20, pp. 307-313, (1995)
[38]  
Choyke P., Girton M., Vaughan E., Frank J., Austin H., Clearance of gadolinium chelates by hemodialysis - An in vitro study, J Magn Reson Imaging, 5, pp. 470-472, (1995)
[39]  
Ranganathan R., Fernandez M., Kang S., Nunn A., Ratsep P., Pillai K., Zhang X., Tweedle M., New multimeric magnetic resonance imaging agents, Invest Radiol, 33, pp. 779-797, (1998)
[40]  
Aime S., Botta M., Ermondi G., Fedeli F., Ugger F., Synthesis and NMRD studies of Gd3 + complexes of macrocyclic polyamino polycarboxylic ligands bearing 3-benzyloxy-α-propionic residues, Inorg Chem, 31, pp. 1100-1103, (1992)