基于高分辨地形的黄土滑坡特征参数提取及其应用意义

被引:12
作者
胡胜 [1 ,2 ,3 ]
邱海军 [1 ,2 ,3 ]
王新刚 [2 ,4 ]
谢婉丽 [2 ,4 ]
龙永清 [1 ,2 ,3 ]
土祥 [1 ,2 ,3 ]
杨冬冬 [1 ,2 ,3 ]
马舒悦 [1 ,2 ,3 ]
张焱 [1 ,2 ,3 ]
曹明明 [1 ]
机构
[1] 西北大学城市与环境学院
[2] 西北大学地表系统与灾害研究院
[3] 陕西省地表系统与环境承载力重点实验室
[4] 西北大学地质学系大陆动力学国家重点实验室
关键词
无人机; 黄土滑坡; 特征参数提取; 黄土高原;
D O I
暂无
中图分类号
P642.22 [滑坡];
学科分类号
0837 ;
摘要
黄土高原是地质灾害的易发区和频发区,传统的野外调查方法费时费力,且难以满足地质灾害精细化制图要求。而近些年来兴起的无人机(UAVs)摄影测量技术和SfM(Structure from Motion)三维建模技术已成为获取野外高分辨率地形数据的新技术。在无人机精度初步验证和野外调查的基础上,建立了11个黄土滑坡的三维数字模型,生成了高分辨率的数字正射影像(DOM)和数字高程模型(DEM)产品。在Agisoft PhotoScan、ArcGIS 10.2、Global Mapper 17、Origin Pro 9.0等平台下,完成了黄土滑坡特征参数提取和分析。研究结果表明:不同飞行高度下,无人机获取的DOM存在0.5 m左右的水平偏移,获取的DEM高程与飞行高度呈正相关,但剖面线趋势高度吻合,无人机DEM高程校准后的垂直精度可达±3 cm;与传统野外调查相比,无人机摄影测量技术和SfM建模技术能够快速、准确地获取黄土滑坡几何特征、地形特征、剖面结构等基本特征参数;低成本无人机系统在坡面尺度下非常适合黄土高原地区的滑坡调查与分析,这个新方法具有巨大的潜在应用价值。
引用
收藏
页码:367 / 379
页数:13
相关论文
共 46 条
  • [11] 天水地区地震滑坡机理研究.[D].张帅.中国地质大学(北京).2016, 02
  • [12] Slope height and slope gradient controls on the loess slide size within different slip surfaces
    Qiu, Haijun
    Cui, Peng
    Regmi, Amar Deep
    Wang, Yanmin
    Hu, Sheng
    [J]. PHYSICAL GEOGRAPHY, 2017, 38 (04) : 303 - 317
  • [13] Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality; quantity and bundle adjustment.[J].M.R. James;S. Robson;S. d'Oleire-Oltmanns;U. Niethammer.Geomorphology.2017,
  • [14] Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?.[J].N. Pineux;J. Lisein;G. Swerts;C.L. Bielders;P. Lejeune;G. Colinet;A. Degré.Geomorphology.2017,
  • [15] UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island; South Shetland Islands; Antarctica).[J].Maciej Dąbski;Anna Zmarz;Piotr Pabjanek;Małgorzata Korczak-Abshire;Izabela Karsznia;Katarzyna J. Chwedorzewska.Geomorphology.2017,
  • [16] Seismic performance of loess-mudstone slope in Tianshui – Centrifuge model tests and numerical analysis.[J].Zelin Zhang;Tao Wang;Shuren Wu;Huiming Tang;Changyu Liang.Engineering Geology.2017,
  • [17] Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines; Italy.[J].B. Bayer;A. Simoni;D. Schmidt;L. Bertello.Engineering Geology.2017,
  • [18] Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake.[J].Wentao Yang;Wenwen Qi;Ming Wang;Jianjun Zhang;Yan Zhang.Geomorphology.2017,
  • [19] Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation.[J].Wojciech Gruszczyński;Wojciech Matwij;Paweł Ćwiąkała.ISPRS Journal of Photogrammetry and Remote Sensing.2017,
  • [20] Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER.[J].N. Casagli;F. Cigna;S. Bianchini;D. H?lbling;P. Füreder;G. Righini;S. Del Conte;B. Friedl;S. Schneiderbauer;C. Iasio;J. Vlcko;V. Greif;H. Proske;K. Granica;S. Falco;S. Lozzi;O. Mora;A. Arnaud;F. Novali;M. Bianchi.Remote Sensing Applications: Society and Environm.2016,