基于改进深度信念网络模型的中长期径流预测

被引:20
作者
岳兆新 [1 ]
艾萍 [1 ,2 ]
熊传圣 [2 ]
宋艳红 [1 ]
洪敏 [2 ]
于家瑞 [2 ]
机构
[1] 河海大学计算机与信息学院
[2] 河海大学水文水资源学院
基金
国家自然科学基金重大研究计划; 中央高校基本科研业务费专项资金资助;
关键词
水文预报; 中长期径流预测; 径流综合指数; 偏互信息法; 深度信念网络;
D O I
暂无
中图分类号
P338 [水文预报];
学科分类号
摘要
为提高流域中长期径流预测效果,提出径流综合指数构建、因子筛选和改进深度信念网络模型相结合的预测方法。首先研究不同水文站点(细粒度)月平均径流的一致性,构造流域径流综合指数(粗粒度),在较宏观层面研究流域水情丰枯变化;接着采用基于信息熵的因子筛选方法,获得影响流域水情丰枯变化的关键因子集,形成深度学习的输入;然后利用改进的深度信念网络(IDBN)模型进行预测。以雅砻江流域为例,将所建模型与多元线性回归、自回归移动平均、反向传播(BP)神经网络、支持向量机和传统深度信念网络等预测模型进行对比分析。结果表明:所提方法具有较好的实用性,且IDBN模型具有更好的预测速度和精度。研究结果可为流域中长期径流变化趋势预测提供参考。
引用
收藏
页码:33 / 46
页数:14
相关论文
共 25 条
  • [11] 水文学原理[M]. 中国水利水电出版社 , 芮孝芳著, 2004
  • [12] A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists
    Shen, Chaopeng
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (11) : 8558 - 8593
  • [13] Wavelet analysis-based projection pursuit autoregression model and its application in the runoff forecasting of Li Xiangjiang basin
    Jiang, Zhiqiang
    Li, Rongbo
    Ji, Changming
    Li, Anqiang
    Zhou, Jianzhong
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (12): : 1817 - 1830
  • [14] A deep belief network with PLSR for nonlinear system modeling[J] . Junfei Qiao,Gongming Wang,Wenjing Li,Xiaoli Li.Neural Networks . 2018
  • [15] A new deep belief network based on RBM with glial chains[J] . Zhiqiang Geng,Zhongkun Li,Yongming Han.Information Sciences . 2018
  • [16] A comparison between wavelet based static and dynamic neural network approaches for runoff prediction[J] . Muhammad Shoaib,Asaad Y. Shamseldin,Bruce W. Melville,Mudasser Muneer Khan.Journal of Hydrology . 2016
  • [17] Long-term runoff study using SARIMA and ARIMA models in the United States
    Valipour, Mohammad
    [J]. METEOROLOGICAL APPLICATIONS, 2015, 22 (03) : 592 - 598
  • [18] Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection[J] . Jianxun He,Caterina Valeo,Angus Chu,Norman F. Neumann.Journal of Hydrology . 2011 (1)
  • [19] Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems[J] . Robert J. May,Graeme C. Dandy,Holger R. Maier,John B. Nixon.Environmental Modelling and Software . 2008 (10)
  • [20] Training products of experts by minimizing contrastive divergence
    Hinton, GE
    [J]. NEURAL COMPUTATION, 2002, 14 (08) : 1771 - 1800