基于人工神经网络的空气质量预测模型优于传统的逐步回归模型,但由于性能差异不明显而较少在空气质量预报中应用.设计了将遗传算法和神经网络算法相结合的基于GA-ANN的空气质量预测模型,并利用天津市2003—2007年气象和污染物监测资料对该模型进行验证.对2007年全年的ρ(SO2),ρ(NO2)和ρ(PM10)进行预测,预测值与实测值的相关系数分别为0.899 6,0.828 3和0.600 0.与一般的人工神经网络预测模型相比较,GA-ANN模型将空气质量等级预报的准确率从77.57%提高到79.67%.GA-ANN模型可结合其他方法进行日常空气质量预报.