基于深度自编码网络模型的风电机组齿轮箱故障检测

被引:48
作者
刘辉海 [1 ]
赵星宇 [2 ]
赵洪山 [1 ]
宋鹏 [3 ]
邓春 [3 ]
机构
[1] 华北电力大学电气与电子工程学院
[2] 中国科学院大学物理科学学院
[3] 不详
关键词
风电机组; 齿轮箱; 故障检测; 深度自编码网络; 自适应阈值;
D O I
10.19595/j.cnki.1000-6753.tces.161746
中图分类号
TM315 [风力发电机];
学科分类号
摘要
为了实现风机齿轮箱的故障检测分析,提出一种基于风电机组齿轮箱的数据采集与监视控制(SCADA)数据和振动信号的深度自编码网络模型。该模型作为一种典型的深度学习方法,通过逐层智能学习初始样本特征,可以获取数据蕴含的规则与分布特征形成更加抽象的高层表示。首先,利用限制性玻尔兹曼机对网络参数进行预训练和反向传播算法对参数进行调优,建立深度自编码网络模型。然后,通过对齿轮箱的状态变量进行编码和解码,计算重构误差并将其作为齿轮箱的状态检测量。为了有效检测重构误差的趋势变化,选用自适应阈值作为风机齿轮箱故障检测的决策准则。最后,利用对齿轮箱故障前、后记录的数据进行仿真分析,结果验证了深度自编码网络学习方法对齿轮箱故障检测的有效性。
引用
收藏
页码:156 / 163
页数:8
相关论文
共 17 条