支持向量机参数优化及其在变压器故障诊断中的应用

被引:30
作者
尹金良
朱永利
机构
[1] 华北电力大学电气与电子工程学院
关键词
支持向量机; 交叉验证; 遗传算法; 参数优化; 网格搜索; 变压器故障诊断;
D O I
暂无
中图分类号
TM407 [维护、检修];
学科分类号
摘要
支持向量机(Support Vector Machines,SVM)分类器在变压器故障诊断中取得了较好的效果,然而对其性能起关键作用的参数选择,却没有理论依据或有效方法。鉴于交叉验证(Cross validation,CV)是模型性能评估和模型选择的有效方法,而遗传算法(Genetic Algorithm,GA)可以实现全局寻优,将CV与GA方法相结合用来选取SVM分类器参数。该方法采用GA方法对SVM分类器参数进行优化,利用CV构造GA适应度函数,为SVM分类器参数选择提供评价标准。并将其应用于变压器故障诊断,从而充分利用有限的变压器故障样本数据,提高SVM分类器的推广性。实例分析表明同Grid与SVM相结合,CV、Grid与SVM相结合及GA与SVM相结合的方法相比,所提方法具有更好的效果。
引用
收藏
页码:11 / 16
页数:6
相关论文
共 12 条
[11]   CROSS-VALIDATORY CHOICE AND ASSESSMENT OF STATISTICAL PREDICTIONS [J].
STONE, M .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1974, 36 (02) :111-147
[12]   基于支持向量机及油中溶解气体分析的大型电力变压器故障诊断模型研究 [J].
董明 ;
孟源源 ;
徐长响 ;
严璋 .
中国电机工程学报, 2003, (07) :88-92