基于小波变换和改进萤火虫算法优化LSSVM的短期风速预测

被引:48
作者
方必武
刘涤尘
王波
闫秉科
汪勋婷
机构
[1] 武汉大学电气工程学院
关键词
短期风速预测; 小波分解与重构; 混沌萤火虫算法; 最小二乘支持向量机;
D O I
暂无
中图分类号
TM614 [风能发电];
学科分类号
0807 ;
摘要
准确预测风速对风电规模化并网至关重要。为提高短期风速预测精度,提出一种基于小波分解和改进的萤火虫算法优化最小二乘支持向量机超参数的风速预测模型。首先利用小波变换将风速时序分解为近似序列和细节序列,然后对各序列分别利用一种新颖的混沌萤火虫算法优化LSSVM进行预测,最后将各序列预测值叠加得到最终风速预测值。在两种时间尺度的实测数据上进行仿真计算。结果表明,该算法较交叉验证的LSSVM,IPSO-LSSVM,WD-DE-LSSVM及BP神经网络等多种经典算法预测精度更高,表明了该算法的有效性和优越性。
引用
收藏
页码:37 / 43
页数:7
相关论文
共 24 条
[21]   基于改进空间相关法和径向基神经网络的风电场短期风速分时预测模型 [J].
李文良 ;
卫志农 ;
孙国强 ;
完整 ;
缪伟 .
电力自动化设备, 2009, 29 (06) :89-92
[22]   基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测 [J].
唐杰明 ;
刘俊勇 ;
杨可 ;
刘友波 .
电网技术, 2009, 33 (03) :63-68
[23]   基于最小二乘支持向量机的风电场短期风速预测 [J].
杜颖 ;
卢继平 ;
李青 ;
邓颖玲 .
电网技术, 2008, (15) :62-66
[24]   基于时间序列分析的风电场风速预测模型 [J].
丁明 ;
张立军 ;
吴义纯 .
电力自动化设备, 2005, (08) :32-34