在线最小二乘支持向量机及其在C8芳烃异构化建模中的应用(英文)

被引:15
作者
李丽娟 [1 ,2 ]
苏宏业 [2 ]
褚建 [2 ]
机构
[1] College of Automation and Electrical Engineering,Nanjing University of Technology
[2] State Key Lab of Industrial Control Technology, Institute of Cyber-systems and Control,Zhejiang
关键词
least squares support vector machine; multi-variable; online; sparseness; isomerization;
D O I
暂无
中图分类号
O621.1 [有机化学理论、物理有机化学];
学科分类号
摘要
The least squares support vector regression (LS-SVR) is usually used for the modeling of single output system, but it is not well suitable for the actual multi-input-multi-output system. The paper aims at the modeling of multi-output systems by LS-SVR. The multi-output LS-SVR is derived in detail. To avoid the inversion of large matrix, the recursive algorithm of the parameters is given, which makes the online algorithm of LS-SVR practical. Since the computing time increases with the number of training samples, the sparseness is studied based on the pro-jection of online LS-SVR. The residual of projection less than a threshold is omitted, so that a lot of samples are kept out of the training set and the sparseness is obtained. The standard LS-SVR, nonsparse online LS-SVR and sparse online LS-SVR with different threshold are used for modeling the isomerization of C8 aromatics. The root-mean-square-error (RMSE), number of support vectors and running time of three algorithms are compared and the result indicates that the performance of sparse online LS-SVR is more favorable.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 5 条
[1]   基于在线最小二乘支持向量机的广义预测控制(英文) [J].
李丽娟 ;
苏宏业 ;
诸建 .
自动化学报, 2007, (11) :1182-1188
[2]   八碳芳烃临氢异构化反应动力学模型 [J].
徐欧官 ;
苏宏业 ;
金晓明 ;
褚健 .
高校化学工程学报, 2007, (03) :429-435
[3]   RBF-MCSR方法用于二甲苯异构化装置的建模 [J].
李志华 ;
陈德钊 ;
庄凌 ;
胡上序 .
化工学报, 2002, (06) :627-632
[4]   八碳芳烃临氢异构反应系统动力学模型——(Ⅰ)用特征向量法研究选择性动力学 [J].
伍登熙 ;
林正仙 .
化工学报, 1985, (03) :257-267
[5]   Least squares support vector machine classifiers [J].
Suykens, JAK ;
Vandewalle, J .
NEURAL PROCESSING LETTERS, 1999, 9 (03) :293-300