基于在线最小二乘支持向量机的广义预测控制(英文)

被引:36
作者
李丽娟
苏宏业
诸建
机构
[1] StateKeyLaboratoryofIndustrialControlTechnology,InstituteofAdvancedProcessControl,ZhejiangUniversity
关键词
Generalized predictive control; least squares support vector machines; fuzzy least squares support machines; online modeling; pH neutralizing process;
D O I
10.16383/j.aas.2007.11.013
中图分类号
TP13 [自动控制理论];
学科分类号
摘要
<正>This paper proposes a practical generalized predictive control(GPC)algorithm based on online least squares support vector machines(LS-SVM)which can deal with nonlinear systems effectively.At each sampling period the algorithm recursively modifies the model by adding a new data pair and deleting the least important one out of the consideration on realtime property.The data pair deleted is determined by the absolute value of lagrange multiplier from last sampling period.The paper gives the recursive algorithm of model parameters when adding a new data pair and deleting an existent one,respectively,and thus the inversion of a large matrix is avoided and the memory can be controlled by the algorithm entirely.The nonlinear LS-SVM model is applied in GPC algorithm at each sampling period.The experiments of generalized predictive control on pH neutralizing process show the effectiveness and practicality of the proposed algorithm.
引用
收藏
页码:1182 / 1188
页数:7
相关论文
共 4 条
[1]   一种基于最小二乘支持向量机的预测控制算法 [J].
刘斌 ;
苏宏业 ;
褚健 .
控制与决策, 2004, (12) :1399-1402
[2]   Least squares support vector machine classifiers [J].
Suykens, JAK ;
Vandewalle, J .
NEURAL PROCESSING LETTERS, 1999, 9 (03) :293-300
[3]   Modeling pH neutralization processes using fuzzy-neural approaches [J].
Nie, JH ;
Loh, AP ;
Hang, CC .
FUZZY SETS AND SYSTEMS, 1996, 78 (01) :5-22
[4]  
Lectur Notes in Computer Science .2 Li L,Su H,Chu J. . 2006