基于云参数贝叶斯网络的威胁评估方法

被引:6
作者
王巍
机构
[1] 南京航空航天大学计算机科学与技术学院
关键词
威胁评估; 贝叶斯网络; 云模型; Noisy-OR;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
文中以威胁评估为背景,针对威胁评估中样本数据不充足,专家构建贝叶斯网络参数工作量大的问题,提出了基于云参数贝叶斯网络的威胁评估方法。把云的表达能力与贝叶斯网络的推理能力相结合,一是运用云的表达能力构建贝叶斯网络参数,二是运用贝叶斯网络的推理能力计算后验概率。首先,以状态组合权值为媒介运用专家知识构建隶属云模型,并利用状态组合权值的不确定度将隶属云模型转换为条件概率表,从而达到以较少的专家工作完成评估模型构建的目的;其次,运用专家构建的威胁评估贝叶斯网络和生成的条件概率表进行威胁评估推理,得到最终的评估结果。实验结果表明,该方法生成的条件概率表的统计数据与专家知识相符,并能有效地应用于威胁评估之中。
引用
收藏
页码:106 / 110
页数:5
相关论文
共 13 条