为了增强多变量广义预测控制算法(MGPC)的实用性,对其实现形式进行了进一步的简化.利用对角CARIMA模型的结构特点,先对系统中单个输出变量期望值的自由响应部分进行分解推导,将其表达成自由响应项系数与系统输入输出变量已知值乘积的形式,得到此输出变量的预测表达式,然后将系统所有输出变量的预测表达式代入目标函数中,得到的控制增量等于控制器系数与参考轨迹、过程输入输出历史数据的乘积.控制器系数只与模型参数及设计参数有关,求解控制量时不再需要进行模型输出预报,控制器结构简单,实现容易.对比实验结果表明了该方法保持了常规MGPC方法的优秀控制性能.