二阶锥规划两个新的预估-校正算法

被引:2
作者
曾友芳 [1 ,2 ]
白延琴 [1 ]
简金宝 [2 ]
唐春明 [2 ]
机构
[1] 上海大学数学系
[2] 广西大学数学与信息科学学院
关键词
二阶锥规划; 不可行内点算法; 预估-校正算法; 全局收敛性; 复杂性分析;
D O I
暂无
中图分类号
O221.2 [非线性规划];
学科分类号
070105 ; 1201 ;
摘要
基于不可行内点法和预估-校正算法的思想,提出两个新的求解二阶锥规划的内点预估-校正算法.其预估方向分别是Newton方向和Euler方向,校正方向属于Alizadeh-Haeberly-Overton(AHO)方向的范畴.算法对于迭代点可行或不可行的情形都适用.主要构造了一个更简单的中心路径的邻域,这是有别于其它内点预估-校正算法的关键.在一些假设条件下,算法具有全局收敛性、线性和二次收敛速度,并获得了O(rln(ε0/ε))的迭代复杂性界,其中r表示二阶锥规划问题所包含的二阶锥约束的个数.数值实验结果表明提出的两个算法是有效的.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 7 条
[1]  
AN INFEASIBLE-INTERIOR-POINT PREDICTOR-CORRECTOR ALGORITHM FOR THE SECOND-ORDER CONE PROGRAM[J]. 迟晓妮,刘三阳.Acta Mathematica Scientia. 2008(03)
[2]   A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions [J].
Pan, Shaohua ;
Chen, Jein-Shan .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (01) :59-88
[3]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[4]   Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions [J].
Monteiro, RDC ;
Tsuchiya, T .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :61-83
[5]  
Applications of second-order cone programming[J] . Miguel Sousa Lobo,Lieven Vandenberghe,Stephen Boyd,Hervé Lebret.Linear Algebra and Its Applications . 1998 (1)
[6]  
Basic lemmas in polynomial-time infeasible-interiorpoint methods for linear programs[J] . Masakazu Kojima.Annals of Operations Research . 1996 (1)
[7]   Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems [J].
Nemirovskii, A ;
Scheinberg, K .
MATHEMATICAL PROGRAMMING, 1996, 72 (03) :273-289