具有平移和尺度不变性的自适应小波变换

被引:2
作者
熊惠霖
张天序
机构
[1] 华中理工大学图像识别与人工智能研究所!图像信息处理与智能控制国家教委开放实验室
[2] 武汉
关键词
自适应小波变换; 平移和尺度不变性; 小波不变矩;
D O I
暂无
中图分类号
TN911.7 [信号处理];
学科分类号
0711 ; 080401 ; 080402 ;
摘要
本文提出了一种具有平移和尺度不变性的自适应小波分解新方法,该方法利用信号的一阶、二阶矩及正交小波尺度函数,先对信号进行自适应小波“重整”.然后再对重整后的信号进行普通小波变换.本文证明这种自适应小波变换是平移和尺度不变的,并给出了计算自适应小波变换系数(称为小波不变矩)的一种有效算法.对二维数字信号(图像)的实验证实了我们的结论.
引用
收藏
页码:104 / 107
页数:4
相关论文
共 11 条
[1]  
Orthonomal shift-invariant adaptive local trigonometric decomposition. L. Cohen S. the and D. Malah. Signal Processing . 1997
[2]  
Entropy-based algorithms for best basis selection. RR Coifman,MV Wickerhauser. IEEE Transactions on Information Theory . 1992
[3]  
Zero-crossings of a wavelet transform. S.Mallat. IEEE Transactions on Information Theory . 1991
[4]  
A two-dimensional translation invariantwavelet representation and its applications. J. Liang,T. W. Parks. Int. Conf. On ImageProcessing . 1994
[5]  
Characterization of signals from multi-scale edges. S.Mallat,S.Zhong. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1992
[6]  
A Translation-invariant Wavelet Representation Algorithm with Application. Jie Liang,Thomas W Parks. IEEE Transactions on Signal Processing . 1996
[7]  
Orthonomal shift-invariant waveletpacket decomposition and representation. I. Cohen, S. Raz and D. Malah. Signal Processing . 1997
[8]  
A Sampling for wavelet subspaces. G. Walter. IEEE Transactions on Information Theory . 1992
[9]  
A theory for multiresolution signal decomposition: Thewavelet decomposition. S. G. Mallat. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1989
[10]  
Shift-invariant adaptive trigonometricdecomposition Proc. I. Cohen, S. Raz and D. Malah. of the 4th European Conference on Speech, Communication and Technology Madrid ,Spain Sep . 1995