基于多项式混沌方法的柔性多体系统不确定性分析

被引:11
作者
皮霆
张云清
吴景铼
机构
[1] 华中科技大学
关键词
柔性多体系统; 绝对节点坐标; 多项式混沌; 随机响应面方法;
D O I
暂无
中图分类号
O313.7 [多体系统动力学];
学科分类号
080101 ;
摘要
研究了柔性多体系统的参数不确定性问题。采用绝对节点坐标方法来描述柔性体的变形,运用多项式混沌方法对柔性多体系统进行不确定性分析。通过理论分析与算例研究,对比了多项式混沌方法与广泛使用的Monte Carlo方法的精度和效率。结果表明,在相同精度要求下,多项式混沌方法在复杂柔性多体系统不确定性分析中效率更高,在工程分析中更具实用价值。
引用
收藏
页码:2341 / 2343+2348 +2348
页数:4
相关论文
共 8 条
[1]   计及参数不确定性的卫星太阳能帆板的柔性多体动力学研究 [J].
何柏岩 ;
王树新 ;
金国光 .
自然科学进展, 2003, (04) :100-104
[2]  
On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles[J] . Lin Li,Corina Sandu.Journal of Terramechanics . 2007 (3)
[3]  
Modeling multibody systems with uncertainties. Part II: Numerical applications[J] . Corina Sandu,Adrian Sandu,Mehdi Ahmadian.Multibody System Dynamics . 2006 (3)
[4]  
Modeling Multibody Systems with Uncertainties. Part I: Theoretical and Computational Aspects[J] . Adrian Sandu,Corina Sandu,Mehdi Ahmadian.Multibody System Dynamics . 2006 (4)
[5]   Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation [J].
García-Vallejo, D ;
Mayo, J ;
Escalona, JL ;
Domínguez, J .
NONLINEAR DYNAMICS, 2004, 35 (04) :313-329
[6]   Modeling uncertainty in flow simulations via generalized polynomial chaos [J].
Xiu, DB ;
Karniadakis, GE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :137-167
[7]  
Mid-frequency structural dynamics with parameter uncertainty[J] . Abhijit Sarkar,Roger Ghanem.Computer Methods in Applied Mechanics and Engineering . 2002 (47)
[8]  
Flexible Multibody Dynamics: Review of Past and Recent Developments[J] . Ahmed A. Shabana.Multibody System Dynamics . 1997 (2)