共 16 条
基于同态滤波和K均值聚类算法的杨梅图像分割
被引:63
作者:
徐黎明
[1
,2
]
吕继东
[1
]
机构:
[1] 常州大学信息科学与工程学院
[2] 江苏城乡建设职业学院设备工程系
来源:
关键词:
图像分割;
算法;
水果;
同态滤波;
K均值聚类;
杨梅;
D O I:
暂无
中图分类号:
TP391.41 [];
学科分类号:
080203 ;
摘要:
针对自然环境下光照不均杨梅果实分割效果不理想问题展开研究。应用同态滤波算法对HSV(色调hue,饱和度saturation,亮度value)颜色空间下杨梅图像V分量进行亮度增强,以补偿光线。而后针对彩色杨梅图像的颜色特征,结合Lab(L(亮度Lightness),a(色度chromaticity,+a表示红色,-a表示绿色),b(色度chromaticity,+b表示黄色,-b表示蓝色)颜色空间a、和b分量的特点,应用K均值聚类算法在Lab颜色空间中对彩色杨梅图像进行分割。为了验证该算法的有效性,在100余幅图像中选用15幅因光照不均和生长状态不同而存在不同程度阴影影响的杨梅图像,进行了3组比较试验,先采用K均值聚类算法对光线补偿去除阴影前后的杨梅图像分割结果进行比较;接着,采用基于色差2*R-G-B自适应灰度阈值分割算法和K均值聚类算法2种不同分割算法对去除阴影后的杨梅图像分割结果进行比较;最后,与基于灰度变换法、直方图均衡化方法的图像增强法去除阴影的效果进行对比。试验结果表明,该文算法的分割误差、假阳性率、假阴性率平均值分别为3.78%,0.69%和6.8%,分别比光线补偿前降低了21.01,12.79和21.14个百分点;与基于色差(2*R-G-B)自适应灰度阈值分割算法相比,分割误差、假阳性率、假阴性率这3个指标的性能平均提高了12.93,1.45和7.11个百分点;与基于灰度变换法图像增强法比较表明,分割误差、假阳性率、假阴性率平均值分别降低了32.94,6.85和29.65个百分点,与直方图均衡化图像增强法相比,这3个值分别降低了24.92,6.12和33.06个百分点。通过试验结果图的主观判断和评价指标的定量分析,验证了该算法能有效地分割出杨梅目标,保证了杨梅目标在颜色、纹理和形状方面的完整度,研究结果为研究采摘机器人进行杨梅等果实的分割和识别提供参考。
引用
收藏
页码:202 / 208
页数:7
相关论文