对植物叶片进行分类,在植物种类鉴别研究中有着重要的意义,而在植物叶片分类中,对叶片的准确分割是进行分类的必要前提。为此,对比分析了传统阈值分割中的最大类间方差法和K-Means聚类两种分割算法,实现对叶片的分割,并将RGB空间转换到Lab空间,再利用两种算法分别进行分割。结果表明:传统的阈值分割和K-Means聚类分割无法将目标图像准确地分割出来;在Lab空间对a分量进行阈值分割可以去除阴影部分,但是分割结果为二值图像;而在Lab空间进行K-Means聚类分割,不仅能够有效地消除在拍摄图像过程中产生的阴影部分,而且分割后的图像为彩色图像,对纹理和颜色特征的提取更加方便,提高了分类识别的准确率。