针对目前Chebyshev神经网络存在的不足,从算法和网络结构方面进行了综合改进。改进后的Chebyshev神经网络不仅符合生物神经网络的基本特征,算法简单,收敛速度快,而且网络输入可以是任意值,是一种多输入的多层前向神经网络模型,因而扩大了网络辨识模型的能力与学习适应性,并有逼近任意线性和非线性映射的优异特性。用改进的Chebyshev神经网络对城市的家庭用水需求量进行建模和预测。仿真结果表明,改进的Chebyshev神经网络为预测家庭用水需求量提供了一种有效的方法,它不仅具有优良的预测能力,而且在相同精度的前提下,其收敛速度也优于一般的BP网络。