基于突现文献和SAO相似度的新兴主题识别研究

被引:25
作者
黄鲁成
张璐
吴菲菲
唐月强
机构
[1] 北京工业大学经济与管理学院
关键词
SAO结构; 语义相似度; 新兴主题识别; 精密单点定位;
D O I
10.16192/j.cnki.1003-2053.2016.06.003
中图分类号
G254 [文献标引与编目];
学科分类号
摘要
新兴研究主题识别可为研究者提供选题方向,把握技术未来前景。传统基于关键词的主题识别,不能准确反映主题词之间的逻辑关系,因而对研究主题的揭示需要依据专家的判断。本文提出的基于突现文献和SAO相似度的新兴研究主题识别,在确定了具有新兴特征的文献后,通过对文献摘要的语义关联分析,揭示了文献研究内容的相似性,从而更准确地提炼出研究主题。文章最后以精密单点定位技术为例对所提出方法进行了实证分析。
引用
收藏
页码:814 / 821
页数:8
相关论文
共 23 条
[11]  
多元科学指标视角下的新兴研究领域识别探索[D]. 郭涵宁.大连理工大学. 2013
[12]  
Identifying emerging topics in science and technology[J] . Henry Small,Kevin W. Boyack,Richard Klavans.Research Policy . 2014
[13]  
Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis[J] . Janghyeok Yoon,Hyunseok Park,Kwangsoo Kim.Scientometrics . 2013 (1)
[14]  
Indices of novelty for emerging topic detection[J] . Yi-Ning Tu,Jia-Lang Seng.Information Processing and Management . 2011 (2)
[15]  
Evaluating the risk of patent infringement by means of semantic patent analysis: the case of DNA chips[J] . IsumoBergmann,DanielButzke,LotharWalter,Jens P.Fuerste,Martin G.Moehrle,Volker A.Erdmann.R&D Management . 2008 (5)
[16]   Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications [J].
Magerman, Tom ;
Van Looy, Bart ;
Song, Xiaoyan .
SCIENTOMETRICS, 2010, 82 (02) :289-306
[17]  
Document–document similarity approaches and science mapping: Experimental comparison of five approaches[J] . Per Ahlgren,Cristian Colliander.Journal of Informetrics . 2008 (1)
[18]   Tracking and predicting growth areas in science [J].
Small, Henry .
SCIENTOMETRICS, 2006, 68 (03) :595-610
[19]   Patent-based inventor profiles as a basis for human resource decisions in research and development [J].
Moehrle, MG ;
Walter, L ;
Geritz, A ;
Müller, S .
R & D MANAGEMENT, 2005, 35 (05) :513-524
[20]  
引文空间分析原理与应用 .2 陈悦,陈超美,胡志刚,等. 科学出版社 . 2015