改进的T-S模糊神经网络用于生化需氧量的软计算(英文)

被引:15
作者
乔俊飞
李微
韩红桂
机构
[1] CollegeofElectronicInformationandControlEngineering,BeijingUniversityofTechnology
关键词
Biochemical oxygen demand Wastewater treatment T–S fuzzy neural network K-means clustering;
D O I
暂无
中图分类号
X832 [水质监测]; X703 [废水的处理与利用];
学科分类号
0804 ; 082803 ; 083002 ;
摘要
It is difficult to measure the online values of biochemical oxygen demand(BOD) due to the characteristics of nonlinear dynamics, large lag and uncertainty in wastewater treatment process. In this paper, based on the knowledge representation ability and learning capability, an improved T–S fuzzy neural network(TSFNN) is introduced to predict BOD values by the soft computing method. In this improved TSFNN, a K-means clustering is used to initialize the structure of TSFNN, including the number of fuzzy rules and parameters of membership function. For training TSFNN, a gradient descent method with the momentum item is used to adjust antecedent parameters and consequent parameters. This improved TSFNN is applied to predict the BOD values in effluent of the wastewater treatment process. The simulation results show that the TSFNN with K-means clustering algorithm can measure the BOD values accurately. The algorithm presents better approximation performance than some other methods.
引用
收藏
页码:1254 / 1259
页数:6
相关论文
共 16 条
[1]   基于局部PLS的多输出过程自适应软测量建模方法(英文) [J].
邵伟明 ;
田学民 ;
王平 .
ChineseJournalofChemicalEngineering, 2014, 22 (07) :828-836+843
[2]   基于加权核Fisher准则特征提取的多模型建模方法(英文) [J].
吕业 ;
杨慧中 .
Chinese Journal of Chemical Engineering, 2014, 22 (02) :146-152
[3]   化工过程基于广义非线性状态观测器的不可测输入和不确定模型参数软仪表(英文) [J].
许锋 ;
汪晔晔 ;
罗雄麟 .
ChineseJournalofChemicalEngineering, 2013, 21 (09) :1038-1047
[4]   基于模糊神经网络的COD软测量技术的研究 [J].
潘峥嵘 ;
王群 .
计算机测量与控制, 2011, (07) :1572-1574
[5]   污水处理曝气池溶解氧智能优化控制系统 [J].
黄银蓉 ;
张绍德 .
信息与控制, 2011, 40 (03) :393-400
[6]   前馈神经网络结构动态增长-修剪方法 [J].
张米娜 ;
韩红桂 ;
乔俊飞 .
智能系统学报, 2011, 6 (02) :101-106
[7]   污水处理溶解氧的模糊神经网络控制器研究 [J].
李雄军 ;
罗健旭 ;
黄志清 ;
王文佳 .
控制工程, 2010, 17(S2) (S2) :64-67+119
[8]   基于神经网络的污水BOD软测量补偿方法研究 [J].
王小艺 ;
刘载文 ;
苏震 .
系统仿真学报, 2009, (S2) :83-85
[9]   污水处理过程的递阶神经网络建模 [J].
丛秋梅 ;
柴天佑 ;
余文 .
控制理论与应用, 2009, 26 (01) :8-14
[10]   人工神经网络在污水处理建模中的应用 [J].
童正环 ;
王静 ;
许伟明 ;
沈昱明 ;
于莲芝 .
仪器仪表学报, 2005, (S2) :347-348