利用分布估计算法(EDA)的全局搜索性能及差分进化(DE)算法的局部优化能力,提出了一种多目标优化问题的混合智能求解方法DE-EDA。DE-EDA的子代个体由两部分构成,一部分按差分进化算法生成,另一部分则是通过对分布估计算法的概率模型进行随机采样生成。利用模拟退火技术在线调整尺度因子Pr,即在进化的初期选择较大的Pr,以保证EDA起主导作用,由EDA引导DE搜索向Pareto前端,增加全局搜索能力,然后在进化的过程中逐渐降低Pr,使得DE逐渐占据主导作用,确保解精确收敛到Pareto前端。通过4组基准函数来测试算法性能,并与NSGA-II和DE算法进行实验比较,结果表明该方法不仅解的多样性和分布性好,而且能够有效提高种群进化的收敛速度,是一种求解多目标优化问题的有效方法。