基于Copula函数的非一致性洪水峰量联合分析

被引:59
作者
冯平
李新
机构
[1] 天津大学水利工程仿真与安全国家重点实验室
关键词
非一致性; 混合分布; Copula函数; 联合分布;
D O I
10.13243/j.cnki.slxb.2013.10.005
中图分类号
P333.2 [暴雨洪涝的分析与计算];
学科分类号
摘要
传统的洪水单变量频率分布形式不能反映在变化环境下洪水序列的真实分布情况,且不适合构建洪水多变量联合分布进行洪水特征的多变量联合分析。以大清河南支沙河上游王快水库入库年洪峰序列和年最大6日洪量序列为基本数据,基于各序列变异点诊断结果,运用混合分布法确定各序列的理论分布,并以此为边缘分布,采用Copula函数法构建其二维联合分布,对两变量重现期及特定条件下的洪峰和洪量条件频率进行了分析,计算了两变量联合分布设计值。结果表明,非一致性洪水单变量重现期介于二维联合重现期与二维同现重现期之间;当峰量具有较高相关性时,发生超过某一频率洪峰设计值的洪峰,会有较大可能发生超过同频率洪量设计值的洪量。基于两变量联合分布得到的洪峰、洪量设计值比单变量同频率法得到的设计值偏大,从工程设计角度偏于安全,对防洪控制是有利的。
引用
收藏
页码:1137 / 1147
页数:11
相关论文
共 19 条
  • [11] Trivariate Flood Frequency Analysis Using the Gumbel–Hougaard Copula[J] . L. Zhang,Vijay P. Singh.Journal of Hydrologic Engineering . 2007 (4)
  • [12] Frequency analysis of nonidentically distributed hydrologic flood data[J] . V.P. Singh,S.X. Wang,L. Zhang.Journal of Hydrology . 2004 (1)
  • [13] Non-stationary approach to at-site flood frequency modelling II. Weighted least squares estimation[J] . Journal of Hydrology . 2001 (1)
  • [14] Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers[J] . W.G. Strupczewski,V.P. Singh,H.T. Mitosek.Journal of Hydrology . 2001 (1)
  • [15] Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation[J] . W.G. Strupczewski,V.P. Singh,W. Feluch.Journal of Hydrology . 2001 (1)
  • [16] The Gumbel logistic model for representing a multivariate storm event
    Yue, S
    [J]. ADVANCES IN WATER RESOURCES, 2000, 24 (02) : 179 - 185
  • [17] Climate change in Ireland from precipitation and streamflow observations
    Kiely, G
    [J]. ADVANCES IN WATER RESOURCES, 1999, 23 (02) : 141 - 151
  • [18] The two-component extreme value distribution for flood frequency analysis: Derivation of a new estimation method[J] . M. Fiorentino,K. Arora,V. P. Singh.Stochastic Hydrology and Hydraulics . 1987 (3)
  • [19] A versatile flood frequency methodology .2 Singh K P. Water International . 1987