本文提出一种采用粒子群(PSO)优化扩展卡尔曼粒子滤波(EPF)的新算法.由于上一时刻的目标解对当前时刻目标的影响最大,提出粒子群中的粒子不考虑其自身最佳经历和群体最佳经历,而只考虑前一时刻的全局最优解;取上一时刻的目标解代表粒子集中全局最优解.采用粒子群优化扩展卡尔曼粒子滤波(EPF)的状态转移方程,使得粒子集在权值更新前趋向于高似然区域,从而更加逼近真实状态的后验概率密度分布,克服了粒子退化问题,提高了预估精度,并极大地降低了所需的粒子数.仿真实验结果表明,该算法预估性能优于传统的粒子滤波方法.