加权平均集成神经网络模型在城市需水预测中的应用

被引:12
作者
崔东文
机构
[1] 云南省文山州水务局
关键词
需水预测; 支持向量机; BP神经网络; Elman神经网络; 加权平均集成模型;
D O I
暂无
中图分类号
TV213.4 [水利资源的管理、保护与改造];
学科分类号
摘要
针对单一神经网络模型预测误差波动大、精度不高等问题,提出基于SVM、BP和Elman神经网络基本模型的加权平均集成需水预测模型。首先,利用相关分析和ADF单位根检验,选取需水预测主要影响因子。为避免模型过度拟合,引入虚拟维,并针对BP、Elman神经网络标准算法收敛速度慢、易陷入局部极值的不足,采用自适应动量算法改进BP和Elman神经网络标准算法,依次构建SVM、BP和Elman需水预测单一模型,并对上海市2002—2011年需水量进行预测;最后,基于加权平均方法对各单一模型预测结果进行综合集成。结果表明:利用加权平均集成模型对上海市2002—2011年需水量进行预测的平均相对误差绝对值为1.8004%,最大相对误差绝对值为3.6995%,精度和泛化能力均大幅优于各单一模型。说明本研究建立的加权平均集成模型用于需水预测是合理可行和有效的,它综合了各单一模型的优点,有效避免了单一模型预测误差过大和不稳定的缺点,具有预测精度高、泛化能力强、误差变化幅度不大等特点。
引用
收藏
页码:27 / 32+45 +45
页数:7
相关论文
共 19 条