为了减少黄瓜叶部病害给农业生产者带来的损失,提高病害的识别率和精度,提出一种基于支持向量机的复杂背景下的黄瓜叶部病害的识别方法。采用K-均值聚类算法和LOG算子等理论,并提出一种基于超像素(super pixel)和形状上下文(shape context)的复杂背景下的黄瓜叶片图像分割算法,将黄瓜病害叶片从复杂背景中成功地分离出来;采用分水岭等算法将病斑从黄瓜病害叶片中分割出来;再根据病斑的特点,分别为黄瓜白粉病和霜霉病提取了颜色、形状、纹理3个方面的比较典型的特征参数;分别建立了黄瓜叶片白粉病检测器和黄瓜叶片霜霉病检测器,将黄瓜叶片病害检测器分为2部分,第1部分为病斑检测器,第2部分是根据病斑检测器的结果来进一步判断叶片是否患有某种病害。试验结果表明:对于黄瓜白粉病的识别,采用基于径向基核函数的SVM病斑检测器的结果进行黄瓜叶片白粉病检测的识别率较高(98.33%),说明采用径向基核函数的方法更适合于白粉病病斑检测器的设计;对于黄瓜霜霉病的识别,采用基于线性核函数的SVM病斑检测器的结果进行黄瓜叶片霜霉病检测的识别率较高(95%),说明采用线性核函数的方法更适合于霜霉病病斑检测器的设计。以上提出的基于支持向量机的方法能有效地进行黄瓜白粉病和霜霉病的识别。