基于高光谱的冬小麦叶面积指数估算方法

被引:31
作者
夏天 [1 ]
吴文斌 [1 ]
周清波 [1 ]
周勇 [2 ]
于雷 [2 ]
机构
[1] 不详
[2] 中国农业科学院农业资源与农业区划研究所/农业部农业信息技术重点实验室
[3] 不详
[4] 华中师范大学城市与环境科学学院
[5] 不详
关键词
高光谱; 冬小麦; 叶面积指数; 估算;
D O I
暂无
中图分类号
S512.11 [];
学科分类号
摘要
【目的】冬小麦叶面积指数是评价其长势和预测产量的重要农学参数,高光谱技术监测叶面积指数的方法能够实现快速无损的监测管理。本文旨在将田间监测和高光谱遥感相结合,探索研究中国南方江汉平原地区冬小麦的最佳波段、光谱参数及监测模型。【方法】研究选取江汉平原的湖北省潜江市后湖管理区,利用ASD地物光谱仪和SunScan冠层分析系统在田间对冬小麦的冠层光谱及叶面积指数的变化进行监测,并探讨高光谱植被指数与冬小麦叶面积指数之间的定量关系。通过相关性分析、回归分析等方法构建6种植被指数与冬小麦叶面积指数的反演模型。【结果】冬小麦冠层光谱反射率中近红外波段870 nm,红光波谷670 nm,绿光波峰550 nm,蓝光450 nm波段对叶面积指数变化最为敏感,通过构建植被指数与叶面积指数模型,相关性均较好,决定系数(R2)为0.675—0.757,其中NDVI反演模型的R2最高为0.757。【结论】经模型精度检验,NDVI植被指数反演模型的精度较其它模型好,较适合对研究样区的冬小麦进行叶面积指数反演。
引用
收藏
页码:2085 / 2092
页数:8
相关论文
共 19 条
  • [11] Quantitative estimation of the shrub canopy LAI from atmosphere-corrected HJ-1 CCD data in Mu Us Sandland
    Wei Chen
    ChunXiang Cao
    QiSheng He
    HuaDong Guo
    Hao Zhang
    RenQiang Li
    Sheng Zheng
    Min Xu
    MengXu Gao
    Jian Zhao
    Sha Li
    XiLiang Ni
    HuiCong Jia
    Wei Ji
    Rong Tian
    Cheng Liu
    YuXing Zhao
    JingLu Li
    [J]. Science China Earth Sciences, 2010, 53 : 26 - 33
  • [12] Leaf Area Index derivation from hyperspectral vegetation indices and the red edge position
    Darvishzadeh, R.
    Atzberger, C.
    Skidmore, A. K.
    Abkar, A. A.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (23) : 6199 - 6218
  • [13] Optimal waveband identification for estimation of leaf area index of paddy rice
    Wang, Fu-min
    Huang, Jing-feng
    Zhou, Qi-fa
    Wang, Xiu-zhen
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2008, 9 (12): : 953 - 963
  • [14] LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements
    Darvishzadeh, Roshanak
    Skidmore, Andrew
    Schlerf, Martin
    Atzberger, Clement
    Corsi, Fabio
    Cho, Moses
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (04) : 409 - 426
  • [15] Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture[J] . Roshanak Darvishzadeh,Andrew Skidmore,Clement Atzberger,Sip van Wieren.International Journal of Applied Earth Observations and Geoinformation . 2008 (3)
  • [16] Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS
    Ahl, Douglas E.
    Gower, Stith T.
    Burrows, Sean N.
    Shabanov, Nikolay V.
    Myneni, Ranga B.
    Knyazikhin, Yuri
    [J]. REMOTE SENSING OF ENVIRONMENT, 2006, 104 (01) : 88 - 95
  • [17] Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J] . Driss Haboudane,John R Miller,Elizabeth Pattey,Pablo J Zarco-Tejada,Ian B Strachan.Remote Sensing of Environment . 2004 (3)
  • [18] Simulation of the reflectance of ground vegetation in sub-boreal forests[J] . Andres Kuusk,Mait Lang,Tiit Nilson.Agricultural and Forest Meteorology . 2004 (1)
  • [19] Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    Gitelson, AA
    Kaufman, YJ
    Merzlyak, MN
    [J]. REMOTE SENSING OF ENVIRONMENT, 1996, 58 (03) : 289 - 298