强冲击下变速箱滚动轴承故障诊断

被引:8
作者
尹芳莉 [1 ]
谭建平 [1 ]
何雷 [1 ]
丁闯 [2 ]
机构
[1] 中南大学机电工程学院
[2] 装甲兵工程学院机械工程系
关键词
强冲击; 变速箱; 滚动轴承; 故障诊断;
D O I
10.13624/j.cnki.issn.1001-7445.2014.03.024
中图分类号
TH165.3 []; TH133.33 [滚动轴承];
学科分类号
080202 ; 080203 ;
摘要
针对装甲车运行过程中负载大、冲击大的特点,在现有方法基础上,将小波包分析、能量分析与包络谱分析相结合的故障诊断方法,应用于强冲击下装甲车变速箱滚动轴承滚动体磨损的故障诊断中。首先,采集变速箱在强冲击下振动加速度信号,进行小波消噪后采用小波包进行三层分解;然后,选取能量最高子带进行Hilbert包络解调,提取包络谱图;最后,从包络谱图中提取出滚动轴承滚动体的故障特征频率。通过实验提取了滚动体的故障特征频率33.57 Hz,与理论值33.3 Hz基本吻合,从而实现了强冲击下滚动轴承滚动体磨损的故障诊断。实验结果表明:小波包能量包络谱应用于强冲击下装甲车变速箱滚动轴承磨损的故障诊断有效。
引用
收藏
页码:620 / 624
页数:5
相关论文
共 20 条
[11]  
基于非线性信号分析的滚动轴承状态监测诊断研究[D]. 刘永斌.中国科学技术大学. 2011
[12]  
设备振动分析与故障诊断技术[M]. 科学出版社 , 陈长征等, 2007
[13]  
基于MATLAB的系统分析与设计[M]. 西安电子科技大学出版社 , 胡昌华等编著, 1999
[14]  
Characterization of gear faults in variable rotating speed using Hilbert-Huang Transform and instantaneous dimensionless frequency normalization[J] . T.Y. Wu,J.C. Chen,C.C. Wang.Mechanical Systems and Signal Processing . 2012
[15]   Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection [J].
Wang, Deng ;
Miao, Duoqian ;
Xie, Chen .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) :14314-14320
[16]   Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference [J].
Zhang, Long ;
Xiong, Guoliang ;
Liu, Hesheng ;
Zou, Huijun ;
Guo, Weizhong .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) :6077-6085
[17]  
Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform[J] . Rui Zhou,Wen Bao,Ning Li,Xin Huang,Daren Yu.Digital Signal Processing . 2009 (1)
[18]  
Application of mother wavelet functions for automatic gear and bearing fault diagnosis[J] . J. Rafiee,M.A. Rafiee,P.W. Tse.Expert Systems With Applications . 2009 (6)
[19]  
Interpretation of mechanical signals using an improved Hilbert–Huang transform[J] . Wen-Xian Yang.Mechanical Systems and Signal Processing . 2007 (5)
[20]  
A joint resonance frequency estimation and in-band noise reduction method for enhancing the detectability of bearing fault signals[J] . I. Soltani Bozchalooi,Ming Liang.Mechanical Systems and Signal Processing . 2007 (4)