改进的局部稀疏表示分类算法及其在人脸识别中的应用

被引:6
作者
尹贺峰 [1 ]
吴小俊 [1 ]
陈素根 [1 ,2 ]
机构
[1] 江南大学物联网工程学院
[2] 安庆师范学院数学与计算科学学院
关键词
稀疏表示分类; 局部稀疏表示分类; 稀疏系数; 相似性; 人脸识别;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。
引用
收藏
页码:48 / 51+85 +85
页数:5
相关论文
共 8 条
  • [1] Bilinear discriminative dictionary learning for face recognition[J] . Hui-Dong Liu,Ming Yang,Yang Gao,Yilong Yin,Liang Chen.Pattern Recognition . 2013
  • [2] Joint discriminative dimensionality reduction and dictionary learning for face recognition
    Feng, Zhizhao
    Yang, Meng
    Zhang, Lei
    Liu, Yan
    Zhang, David
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2134 - 2143
  • [3] Learning dictionary on manifolds for image classification[J] . Bao-Di Liu,Yu-Xiong Wang,Yu-Jin Zhang,Bin Shen.Pattern Recognition . 2012
  • [4] Locality-sensitive dictionary learning for sparse representation based classification[J] . Chia-Po Wei,Yu-Wei Chao,Yi-Ren Yeh,Yu-Chiang Frank Wang.Pattern Recognition . 2012
  • [5] Face image recognition via collaborative representation on selected training samples[J] . Jian-Xun Mi.Optik - International Journal for Light and Electron Optics . 2012
  • [6] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [7] A two-phase test sample sparse representation method for use with face recognition .2 Xu,Yong,Zhang,David,Yang,Jian,Yang,Jing-Yu. IEEE Transactions on Circuits and Systems for Video Technology . 2011
  • [8] Local Sparse Representation based Classification .2 Li Chunguang,Guo Jun,Zhang Honggang. International Conference on Pattern Recognition . 2010