Lorenz混沌系统Lyapunov稳定性简洁的代数充要条件及其应用

被引:6
作者
廖晓昕 [1 ]
罗琦 [2 ]
机构
[1] 华中科技大学控制科学与工程系
[2] 南京信息工程大学信息与控制学院
关键词
Lorenz混沌系统; Lyapunov稳定性; 代数充要条件; 分支值; 全局指数同步;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
摘要
给出了著名的Lorenz混沌系统零平衡位置Lyapunov意义下全局指数稳定、全局渐近稳定、不稳定的简洁的代数充要条件;也给出了两个非零平衡位置局部指数型稳定、不稳定及线性化系统稳定而非渐近稳定的代数充要条件.发展、改进和推广了前人关于Lorenz系统Lyapunov稳定性的结果.将新结果应用到Chen系统、Lu¨系统、Yang-Chen系统、Yu-XiaLi混合系统的混沌控制,得到了使之全局指数稳定化的证明简捷且更少保守的反馈控制律,丰富了Lorenz混沌系统的理论研究和应用成果.
引用
收藏
页码:1086 / 1095
页数:10
相关论文
共 7 条
[1]   漫谈Lyapunov稳定性的理论、方法和应用 [J].
廖晓昕 .
南京信息工程大学学报(自然科学版), 2009, 1 (01) :1-15
[2]  
Global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and unmeasured states dependent growth[J]. LIU YunGang School of Control Science and Engineering,Shandong University,Jinan 250061,China.Science in China(Series F:Information Sciences). 2008(10)
[3]  
Globally exponentially attractive sets of the family of Lorenz systems[J]. LIAO XiaoXin1,2, FU YuLi3, XIE ShengLi3 & YU Pei4 1 Department of Control Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074, China;2 School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China;3 School of Electronics & Information Engineering, South China University of Technology, Guangzhou 519640, China;4 Department of Applied Mathematics, The University of Western O
[4]  
On the new results of global attractive set and positive invariant set of the Lorenz chaotic system and the applications to chaos control and synchronization[J]. LIAO Xiaoxin 1, 2, 3 , FU Yuli 4 & XIE Shengli 4 1. Department of Control Science & Control Engineering, Huazhong University of Science & Technology, Wuhan 430074, China;2. School of Automation, Wuhan University of Science & Technology, Wuhan 430070, China;3. School of Information, Central South University of Economy, Politics and Law,
[5]  
连续系统超混沌反控制的研究[D]. 李玉霞.广东工业大学 2005
[6]  
Lorenz系统族的动力学分析、控制与同步[M]. 科学出版社 , 陈关荣,吕金虎著, 2003
[7]  
A Rigorous ODE Solver and Smale’s 14th Problem[J] . Warwick Tucker.Foundations of Computational Mathematics . 0 (1)