共 6 条
次同步谐振中的分歧分析
被引:5
作者:
邓集祥
华瑶
韦春华
机构:
[1] 东北电力学院,东北电力学院,东北电力学院吉林省吉林市,吉林省吉林市,吉林省吉林市
来源:
关键词:
次同步谐振;
数值微分算法;
Lyapunov-Schmidt方法;
分歧;
高维非线性向量场;
D O I:
暂无
中图分类号:
TM712 [电力系统稳定];
学科分类号:
080802 ;
摘要:
应用Lyapunov-Schmidt方法对高维非线性向量场进行了约化,采用Hopf分歧理论分析了次同步谐振中出现的分歧现象。利用数值微分法求出了曲率系数对分歧参数的灵敏度,从而可预见分歧轨道稳定性态的变化。研究表明:不同的串联补偿度、不同的参数可能导致不同类型的分歧。在某一串联补偿度上,出现的次同步谐振可能被轨道稳定的极限环所取代。随着串联补偿度的升高,次同步谐振可能出现于虚轴左侧邻域。换句话说,在另一较高的串联补偿度上,轨道不稳定的极限环将从原来渐近稳定平衡点上分岔出来,系统的稳定性态将被改变。
引用
收藏
页码:24 / 27+39
+39
页数:5
相关论文