数独问题的一个分布式物理博弈求解

被引:2
作者
商文喜 [1 ]
蔚承建 [1 ]
王开 [2 ]
刘凯 [3 ]
机构
[1] 南京工业大学电子与信息工程学院
[2] 东南大学信息科学与工程学院
[3] 解放军理工大学国防工程学院
关键词
数独问题; 势博弈; 效用函数; 学习动力; 物理博弈;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
数独问题已被证明是一个NP完全问题。采用分布式势博弈方法求解该问题。首先建立其效用函数并证明数独问题可以转化为势博弈模型,然后使用学习动力逐步优化参与者的状态以达到势博弈的最优状态—纳什均衡点。同时势博弈现有大部分研究结果限于计算机仿真,为此给出数独问题一个物理的博弈实现,物理博弈过程参与者通过三个手机体现。实验结果表明新的解决方式能够快速收敛。
引用
收藏
页码:113 / 115
页数:3
相关论文
共 11 条
[1]   Distributed Welfare Games [J].
Marden, Jason R. ;
Wierman, Adam .
OPERATIONS RESEARCH, 2013, 61 (01) :155-168
[2]  
An architectural view of game theoretic control[J] . Ragavendran Gopalakrishnan,Jason R. Marden,Adam Wierman. &nbspACM SIGMETRICS Performance Evaluation Review . 2011 (3)
[3]   Metaheuristics can solve sudoku puzzles [J].
Lewis, Rhyd .
JOURNAL OF HEURISTICS, 2007, 13 (04) :387-401
[4]   Potential games [J].
Monderer, D ;
Shapley, LS .
GAMES AND ECONOMIC BEHAVIOR, 1996, 14 (01) :124-143
[5]  
Geometric particle swarm optimization for the Sudoku puzzle. Alberto Moraglio,Julian Togelius. Proceedings of the 9th annual conference on genetic and evolutionary computation . 2007
[6]  
Knowledge-Based Intelligent Information and Engineering Systems. Zong Woo Geem. . 2007
[7]  
A SAT-based Sudoku solver. Tjark Weber. The 12th International Conference on Logic for Programming,Artificial Intelligence,and Reasoning . 2005
[8]  
Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. H.Peyton Young. Journal of Women s Health . 1998
[9]  
Equilibrium, evolutionary stability and gradient dynamics. Sjur Didrik Fl?m. Int. Game Theory Rev . 2002
[10]  
Complexity and Completeness of Finding Another Solution and Its Application to Puzzles. Yato, Takayuki,Seta, Takahiro. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences . 2003