共 14 条
基于多尺度深度学习的自适应航拍目标检测
被引:17
作者:
刘芳
韩笑
机构:
[1] 北京工业大学信息学部
来源:
关键词:
无人机;
目标检测;
多尺度卷积;
注意力机制;
特征融合;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
TP391.41 [];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
080203 ;
摘要:
无人机已经被广泛应用到各个领域,目标检测成为无人机视觉领域关键技术之一。针对无人机图像中场景复杂、尺度多变、小目标丰富等问题,提出了一种基于多尺度深度学习的自适应航拍目标检测算法。首先,构建自适应特征提取网络MSDarkNet-53,引入多尺度卷积方式,采用不同类型卷积核对不同尺寸目标进行运算,有效扩大感受野。其次,结合注意力机制的优点设计卷积模块,自适应优化特征权重,增强有效特征,抑制无效特征,得到表征能力更强的特征。最后,构建基于多尺度特征融合的预测网络,根据小目标的特点,选取多层级特征映射融合成高分辨率特征图,在单一尺度上进行目标分类和边界框回归。实验表明:本文算法提升了无人机图像的目标检测精度,具有良好的鲁棒性。
引用
收藏
页码:471 / 482
页数:12
相关论文