中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成

被引:23
作者
范虎
文自翔
王春娥
王芳
邢光南
赵团结
盖钧镒
机构
[1] 南京农业大学大豆研究所/农业部大豆生物学与遗传育种重点实验室/国家大豆改良中心/作物遗传与种质创新国家重点实验室
关键词
野生大豆(Glycine soja Sieb.et Zucc.); SSR; 关联分析; 优异等位变异;
D O I
暂无
中图分类号
S565.1 [大豆];
学科分类号
摘要
选用204对SSR标记对全国野生大豆群体(174份代表性样本)的基因组扫描,采用TASSEL软件的GLM(general linear model)方法对百粒重、开花期、成熟期、干豆腐得率、干豆乳得率和耐淹性性状值关联分析,解析与性状关联位点的优异等位变异,鉴别出一批与农艺、加工性状关联的优异等位变异及携带优异等位变异的载体材料;进一步分析极值表型材料的遗传构成。结果表明:(1)累计51个位点(次)与性状关联,有些标记同时与2个或多个性状相关联,可能是性状相关的遗传基础;关联位点中累计16位点(次)与连锁分析定位的QTL一致;(2)与地方品种群体和育成品种群体的关联位点比较,发现野生群体关联位点只有少数与之相同,群体间育种性状的遗传结构有明显差异。(3)与多性状关联的位点其等位变异对不同性状的效应方向可相同可不同,如GMES5532a-A332对百粒重和耐淹性的相对死苗率都是增效效应,而GMES5532a-A344对百粒重是减效效应,对相对死苗率是增效效应;(4)极值表型材料间的遗传构成有很大差异。表型值大的材料携带较多增效效应大的位点等位变异,例如N23349的百粒重是9.08g,含有4个增效效应较大的位点等位变异;表型值小的材料携带较多减效效应大的位点等位变异,如N23387的百粒重是0.75g,含有4个减效效应较大的位点等位变异。关联作图得到的信息可以弥补连锁定位信息的不足,尤其是全基因组位点上复等位变异的信息为育种提供了亲本选配和后代等位条带辅助选择的依据。
引用
收藏
页码:775 / 788
页数:14
相关论文
共 11 条
  • [1] 中国野生大豆群体特征和地理分化的遗传分析
    范虎
    赵团结
    丁艳来
    邢光南
    盖钧镒
    [J]. 中国农业科学, 2012, 45 (03) : 414 - 425
  • [2] A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering
    Watanabe, Satoshi
    Xia, Zhengjun
    Hideshima, Rumiko
    Tsubokura, Yasutaka
    Sato, Shusei
    Yamanaka, Naoki
    Takahashi, Ryoji
    Anai, Toyoaki
    Tabata, Satoshi
    Kitamura, Keisuke
    Harada, Kyuya
    [J]. GENETICS, 2011, 188 (02) : 395 - U260
  • [3] Genetic Redundancy in Soybean Photoresponses Associated With Duplication of the Phytochrome A Gene
    Liu, Baohui
    Kanazawa, Akira
    Matsumura, Hisakazu
    Takahashi, Ryoji
    Harada, Kyuya
    Abe, Jun
    [J]. GENETICS, 2008, 180 (02) : 995 - 1007
  • [4] Association mapping of yield and its components in rice cultivars
    Agrama, H. A.
    Eizenga, G. C.
    Yan, W.
    [J]. MOLECULAR BREEDING, 2007, 19 (04) : 341 - 356
  • [5] Methods for linkage disequilibrium mapping in crops[J] . Ian Mackay,Wayne Powell.Trends in Plant Science . 2006 (2)
  • [6] Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat[J] . Current Science . 2006 (5)
  • [7] Maize association population: a high‐resolution platform for quantitative trait locus dissection[J] . Sherry A.Flint‐Garcia,Anne‐CélineThuillet,JianmingYu,GaelPressoir,Susan M.Romero,Sharon E.Mitchell,JohnDoebley,StephenKresovich,Major M.Goodman,Edward S.Buckler.The Plant Journal . 2005 (6)
  • [8] Mapping of QTL associated with chilling tolerance during reproductive growth in soybean
    Funatsuki, H
    Kawaguchi, K
    Matsuba, S
    Sato, Y
    Ishimoto, M
    [J]. THEORETICAL AND APPLIED GENETICS, 2005, 111 (05) : 851 - 861
  • [9] Identification of putative QTL that underlie yield in interspecific soybean backcross populations
    Wang, D
    Graef, GL
    Procopiuk, AM
    Diers, BW
    [J]. THEORETICAL AND APPLIED GENETICS, 2004, 108 (03) : 458 - 467
  • [10] Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean[J] . I.M. Tasma,L.L. Lorenzen,D.E. Green,R.C. Shoemaker.Molecular Breeding . 2001 (1)