Nash均衡、变分不等式和广义均衡问题的关系

被引:22
作者
徐庆
朱道立
鲁其辉
机构
[1] 复旦大学管理学院管理科学系,复旦大学管理学院管理科学系,复旦大学管理学院管理科学系上海,上海,上海
基金
中国博士后科学基金;
关键词
Nash均衡; 变分不等式; 广义均衡; 单调性;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
主要讨论了Nash均衡问题(NE)与变分不等式(VI)和广义均衡问题(GEP)的关系.给出它们之间解的等价关系,以及与之相应的映射之间单调性的关系.研究结果为进一步研究Nash均衡、广义均衡问题理论及其算法提供了理论依据.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 7 条
[1]  
Augmented Lagrangian Theory, Duality and Decomposition Methods for Variational Inequality Problems[J] . D.L. Zhu.Journal of Optimization Theory and Applications . 2003 (1)
[2]  
Nash Equilibria, Variational Inequalities, and Dynamical Systems[J] . E. Cavazzuti,M. Pappalardo,M. Passacantando.Journal of Optimization Theory and Applications . 2002 (3)
[3]   Homotopy method for solving variational inequalities [J].
Lin, Z ;
Li, Y .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 100 (01) :207-218
[4]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[5]  
A continuation method for monotone variational inequalities[J] . Bintong Chen,Patrick T. Harker.Mathematical Programming . 1995 (1)
[6]  
Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms[J] . G. Cohen,F. Chaplais.Journal of Optimization Theory and Applications . 1989 (3)
[7]  
Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] . Patrick T. Harker,Jong-Shi Pang.Mathematical Programming . 1990 (1)