基于改进EMD和谱峭度法滚动轴承故障特征提取

被引:80
作者
张志刚 [1 ]
石晓辉 [1 ]
施全 [1 ]
汤宝平 [2 ]
机构
[1] 重庆理工大学汽车零部件制造及检测技术教育部重点实验室
[2] 重庆大学机械传动国家重点实验室
关键词
滚动轴承; 故障特征; 提取; 改进EMD; 谱峭度;
D O I
10.16450/j.cnki.issn.1004-6801.2013.03.016
中图分类号
TH165.3 []; TH133.33 [滚动轴承];
学科分类号
摘要
针对滚动轴承故障信号的强背景噪声特点,提出一种基于改进经验模态分解(empirical mode decomposi-tion,简称EMD)与谱峭度法的滚动轴承故障特征提取方法。首先,利用EMD方法对原故障信号进行分解,得到若干平稳固有模态分量(intrinsic mode function,简称IMF);然后,采用灰色关联度与互信息相结合方法剔除传统EMD分解结果中存在的虚假分量;最后,运用谱峭度法和包络解调方法对真实IMF分量进行分析,提取故障特征频率。通过对实际滚动轴承故障信号的应用表明,该方法可有效地提取滚动轴承故障特征,且能够取得比传统包络解调分析更好的效果。
引用
收藏
页码:478 / 482+529 +529-530
页数:7
相关论文
共 15 条
[11]  
Fast computation of the kurtogram for the detection of transient faults[J] . Mechanical Systems and Signal Processing . 2006 (1)
[12]  
An improved Hilbert–Huang transform and its application in vibration signal analysis[J] . Z.K. Peng,Peter W. Tse,F.L. Chu.Journal of Sound and Vibration . 2004 (1)
[13]  
The spectral kurtosis: a useful tool for characterising non-stationary signals[J] . Mechanical Systems and Signal Processing . 2004 (2)
[14]  
The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J] . Mechanical Systems and Signal Processing . 2004 (2)
[15]  
A NEW VIEW OF NONLINEAR WATER WAVES: The Hilbert Spectrum1[J] . Norden E. Huang,Zheng Shen,Steven R. Long.Annual Review of Fluid Mechanics . 1999 (1)