蛋白质亚细胞定位预测的机器学习方法

被引:7
作者
张树波 [1 ,2 ]
赖剑煌 [3 ,2 ]
机构
[1] 中山大学数学与计算科学学院
[2] 广东省信息安全技术重点实验室
[3] 中山大学信息技术与科学学院
关键词
亚细胞定位; 生物信息学; 机器学习; 分类器; 特征提取;
D O I
暂无
中图分类号
Q51 [蛋白质]; TP181 [自动推理、机器学习];
学科分类号
071010 ; 081704 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
蛋白质亚细胞定位与其功能密切相关。蛋白质在细胞中的正确定位是细胞系统高度有序运转的前提保障。研究细胞中蛋白质定位的机制和规律,预测蛋白质的亚细胞定位,对于了解蛋白质的性质和功能,了解蛋白质之间的相互作用,探索生命的规律和奥秘具有重要意义。基于机器学习方法的蛋白质亚细胞定位预测是生物信息学研究的热点之一。从数据集的建立、蛋白质序列特征刻画和蛋白质亚细胞定位预测算法3个方面,总结和评述了在过去十几年里机器学习方法在蛋白质亚细胞定位研究中的应用情况和取得的成果,分析了机器学习方法在蛋白质亚细胞定位预测方面存在的问题和面临的挑战,指出了蛋白质亚细胞定位研究的主要方向。
引用
收藏
页码:29 / 33+49 +49
页数:6
相关论文
共 16 条
[1]  
Hum-mPLoc: An ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites[J] . Hong-Bin Shen,Kuo-Chen Chou.Biochemical and Biophysical Research Communications . 2007 (4)
[2]  
Hum-PLoc: A novel ensemble classifier for predicting human protein subcellular localization[J] . Kuo-Chen Chou,Hong-Bin Shen.Biochemical and Biophysical Research Communications . 2006 (1)
[3]  
Improved Prediction of Signal Peptides: SignalP 3.0[J] . Journal of Molecular Biology . 2004 (4)
[4]  
Prediction of protein subcellular locations by GO–FunD–PseAA predictor[J] . Kuo-Chen Chou,Yu-Dong Cai.Biochemical and Biophysical Research Communications . 2004 (4)
[5]   Better prediction of sub-cellular localization by combining evolutionary and structural information [J].
Nair, R ;
Rost, B .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 53 (04) :917-930
[6]   A new hybrid approach to predict subcellular localization of proteins by incorporating gene ontology [J].
Chou, KC ;
Cai, YD .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 311 (03) :743-747
[7]   Support vector machine approach for protein subcellular localization prediction [J].
Hua, SJ ;
Sun, ZR .
BIOINFORMATICS, 2001, 17 (08) :721-728
[8]   Prediction of the subcellular location of prokaryotic proteins based on a new representation of the amino acid composition [J].
Feng, ZP .
BIOPOLYMERS, 2001, 58 (05) :491-499
[9]  
A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome 1 1 Edited by F. Cohen[J] . Amar Drawid,Mark Gerstein.Journal of Molecular Biology . 2000 (4)
[10]   Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J].
Emanuelsson, O ;
Nielsen, H ;
Brunak, S ;
von Heijne, G .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 300 (04) :1005-1016