Better prediction of sub-cellular localization by combining evolutionary and structural information

被引:72
作者
Nair, R
Rost, B
机构
[1] Columbia Univ, CUBIC, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
[3] Columbia Univ, NESG Consortium, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[4] Columbia Univ, Dept Phys, New York, NY 10032 USA
关键词
protein sub-cellular localization; protein structure; secondary structure; surface composition; sequence motifs; evolutionary profiles; neural network; bioinformatics; PDB; automatic genome annotation;
D O I
10.1002/prot.10507
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The native sub-cellular compartment of a protein is one aspect of its function. Thus, predicting localization is an important step toward predicting function. Short zip code-like sequence fragments regulate some of the shuttling between compartments. Cataloguing and predicting such motifs is the most accurate means of determining localization in silico. However, only few motifs are currently known, and not all the trafficking appears regulated in this way. The amino acid composition of a protein correlates with its localization. All general prediction methods employed this observation. Here, we explored the evolutionary information contained in multiple alignments and aspects of protein structure to predict localization in absence of homology and targeting motifs. Our final system combined statistical rules and a variety of neural networks to achieve an overall four-state accuracy above 65%, a significant improvement over systems using only composition. The system was at its best for extra-cellular and nuclear proteins; it was significantly less accurate than TargetP for mitochondrial proteins. Interestingly, all methods that were developed on SWISS-PROT sequences failed grossly when fed with sequences from proteins of known structures taken from PDB. We therefore developed two separate systems: one for proteins of known structure and one for proteins of unknown structure. Finally, we applied the PDB-based system along with homology-based inferences and automatic text analysis to annotate all eukaryotic proteins in the PDB (http://cubic.bioc. columbia.edu/db/LOC3D). We imagine that this pilot method-certainly in combination with similar tools-may be valuable target selection in structural genomics. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:917 / 930
页数:14
相关论文
共 90 条
[1]   Adaptation of protein surfaces to subcellular location [J].
Andrade, MA ;
O'Donoghue, SI ;
Rost, B .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 276 (02) :517-525
[2]   A biologist's view of the Drosophila genome annotation assessment project [J].
Ashburner, M .
GENOME RESEARCH, 2000, 10 (04) :391-393
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :45-48
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1977, 80 (02) :319-324
[7]   The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 [J].
Boeckmann, B ;
Bairoch, A ;
Apweiler, R ;
Blatter, MC ;
Estreicher, A ;
Gasteiger, E ;
Martin, MJ ;
Michoud, K ;
O'Donovan, C ;
Phan, I ;
Pilbout, S ;
Schneider, M .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :365-370
[8]   Predicting function: From genes to genomes and back [J].
Bork, P ;
Dandekar, T ;
Diaz-Lazcoz, Y ;
Eisenhaber, F ;
Huynen, M ;
Yuan, YP .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 283 (04) :707-725
[9]   Support vector machines for prediction of protein subcellular location by incorporating quasi-sequence-order effect [J].
Cai, YD ;
Liu, XJ ;
Xu, XB ;
Chou, KC .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2002, 84 (02) :343-348
[10]  
Cai Yu-Dong, 2000, Molecular Cell Biology Research Communications, V4, P172, DOI 10.1006/mcbr.2001.0269