运用两阶段学习方法构建径向基函数(RBF)神经网络模型预测混沌时间序列.在利用非监督学习算法确定网络隐层中心时,提出了一种基于高斯基的距离度量,并联合输入输出聚类的策略.基于Fisher可分离率设计高斯基距离度量中的惩罚因子,可以提高聚类的性能.而输入输出聚类策略的引入,建立了聚类性能与网络预测性能之间的联系.因此,根据本文方法构建的网络模型,一方面可以加快网络训练的速度,另一方面可以提高预测性能.将该方法对Mackey-Glass,Lorenz和Logistic混沌时间序列进行了预测仿真研究,仿真结果表明了该方法的有效性.