Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emission of typical nanosecond-pulse discharges(corona,diffuse,spark or arc)are reviewed.Especially,the diffuse discharges are observed at pulse repetition frequencies up to 1 kHz.Factors influencing the discharge characteristics and X-ray emission are analyzed,such as the gap spacing,parameters of the applied pulse(amplitude,pulse repetition frequency),anode and cathode materials,and curvature radius of cathode.It is concluded that the maximum X-ray intensity is obtained in a diffuse discharge,and the X-ray intensity is affected by the pulse repetition frequency,applied voltage,anode material,and curvature radius of cathode.For example,X-ray intensity increases with the pulse repetition frequency and the atomic numbers of the anode material,but it decrease with the increase of curvature radius.It is also shown that the cathode material has no obvious influence on the X-ray intensity.