针对传统粒子群算法(Traditional Particle Swarm Optimization,TPSO)存在的易陷入局部最优、收敛速度慢等缺点,提出了一种基于载波的粒子群算法(carrier-wave Particle SwarmOptimization,CWPSO)。根据正弦函数具有的自变量连续变化而值域不变的特点,该算法设计了以载波自变量变化确定粒子搜索位置的新方法,从而极大地提高了全局搜索能力。同时对于搜索到的可能极值点,通过载波扩展的方法进行局部寻优,以进行精确搜索。对一系列测试函数的寻优结果表明:CWPSO算法不仅都能找到最优值,且寻优时间仅为TPSO算法和惯性权值线性下降的改进PSO算法(Line-WPSO,LWPSO)的1/3~1/5;同时,CWPSO具有对寻优问题维数不敏感的优点,大大扩展了该算法的适用范围。