共 19 条
基于稀疏贝叶斯学习的电力系统暂态稳定评估
被引:9
作者:
段青
[1
]
赵建国
[2
]
马艳
[3
]
机构:
[1] 山东大学电气工程学院
[2] 国家电网技术学院
[3] 国核电力规划设计研究院
来源:
关键词:
概率学习;
贝叶斯理论;
相关向量机;
支持向量机;
暂态稳定评估;
D O I:
暂无
中图分类号:
TM712 [电力系统稳定];
学科分类号:
080802 ;
摘要:
介绍了基于稀疏贝叶斯学习理论的模式识别技术相关向量机及其分类器,在此基础上构建了电力系统暂态稳定评估模型。以EPRI36电力系统暂态稳定仿真数据为例,在相同的数据输入和相同的仿真环境下同时构建相关向量机和支持向量机2种暂态稳定评估模型。仿真预测计算显示,作为一种全新的概率学习模型,相关向量机不仅得到了比支持向量机更高的预测精确度,而且还能得到支持向量机无法完成的概率性预测和更高的稀疏性计算。
引用
收藏
页码:36 / 40
页数:5
相关论文