详细介绍了利用粗糙集的基本理论构造变压器的多变量故障决策树的具体过程,考虑了属性间的关联性,避免了生成决策树时故障特征的重复检测,适用于大量样本的自动处理,具有较好的自组织性和自适应性。通过粗糙集分辨矩阵确定多变量检测特征的选取,将相对泛化的概念用于构造多变量检验,采用知识粗糙度作为选择决策树属性的度量,方便有效地解决了构造多变量故障决策树的关键问题。与传统的信息熵算法相比,基于知识粗糙度的决策树计算量大大减少,且可能得到最优的故障树。故障实例分析表明,该方法有效地简化了决策树,减少了故障信息的冗余性,诊断效率高,结果易于被人理解。