为了快速准确地实现背景纹理复杂织物的疵点检测,改善传统算法计算量大的缺点,提出基于稀疏编码字典学习的疵点检测算法.首先利用Radon变化对图像进行倾斜矫正,减小像素信息处理误差,再使用Gabor滤波器对矫正后图像滤波,消除噪声影响.接着对预处理后的图像,以一定尺寸窗口,滑动选取图像块构建输入样本集,采用K-SVD算法对无瑕疵样本集合进行字典学习,得到稀疏系数并重构,进而取得水平、垂直投影特征矩阵.最后利用已得到的字典与稀疏系数对待检测样本重构,求得其相对应的特征矩阵,并用结构相似法最终确定疵点区域.实验表明,该算法检测时间短,效率较高,平均可达92.3%.