Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material

被引:19
作者
CHANG Qing-liang
机构
基金
中国国家自然科学基金;
关键词
mining engineering; paste filling material; neural network; particle swarm; optimized algorithm; prediction;
D O I
暂无
中图分类号
TD823.7 [];
学科分类号
081901 ;
摘要
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines.
引用
收藏
页码:551 / 555
页数:5
相关论文
共 6 条
  • [1] 厚表土层薄基岩条件下村庄压煤条带开采试验
    朱卫兵
    许家林
    李兴尚
    王志刚
    [J]. 中国矿业大学学报, 2007, (06) : 738 - 742
  • [2] 条带开采下沉系数计算与优化设计的神经网络模型
    郭文兵
    邓喀中
    邹友峰
    [J]. 中国安全科学学报, 2006, (06) : 40 - 45+148
  • [3] 膏体充填材料力学性能的初步实验
    赵才智
    周华强
    瞿群迪
    关明亮
    [J]. 中国矿业大学学报, 2004, (02) : 35 - 37
  • [4] 固体废物膏体充填不迁村采煤
    周华强
    侯朝炯
    孙希奎
    瞿群迪
    陈德俊
    不详
    [J]. 中国矿业大学学报 , 2004, (02) : 30 - 34+53
  • [5] 开采影响下建筑物损害程度的人工神经网络预测模型
    郭文兵
    吴财芳
    邓喀中
    [J]. 岩石力学与工程学报, 2004, (04) : 583 - 587
  • [6] 基于MATLAB的胶结充填材料BP神经网络质量模型[J]. 崔明义,孙恒虎.有色金属. 2003(01)